Polymer scaffolds delineate healthy from diseased states at sites distal from the pancreas in two models of type 1 diabetes.
gene signatures
immunological niche
type 1 diabetes
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
31 Jul 2024
31 Jul 2024
Historique:
revised:
17
07
2024
received:
05
04
2024
accepted:
25
07
2024
medline:
31
7
2024
pubmed:
31
7
2024
entrez:
31
7
2024
Statut:
aheadofprint
Résumé
Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic β cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of β cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D. Biopsy and analysis of the IN enables disease monitoring using transcriptomic changes at a distal site from autoimmune destruction of the pancreas, thereby gaining cellular level information about disease without the need for a biopsy of the native organ. Using this approach, we identified gene signatures that stratify healthy and diseased mice in both an adoptive transfer model and a spontaneous onset model of T1D. The gene signatures identified herein demonstrate the ability of the IN to identify immune activation associated with diabetes across models.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Science Foundation
Organisme : Juvenile Diabetes Research Foundation United States of America
Organisme : NIH HHS
Pays : United States
Informations de copyright
© 2024 The Author(s). Biotechnology and Bioengineering published by Wiley Periodicals LLC.
Références
Abdallah, B. M., Ditzel, N., Laborda, J., Karsenty, G., & Kassem, M. (2015). DLK1 regulates whole‐body glucose metabolism: A negative feedback regulation of the osteocalcin‐insulin loop. Diabetes, 64(9), 3069–3080. https://doi.org/10.2337/db14-1642
Anderson, M. S., & Bluestone, J. A. (2005). The NOD mouse: A model of immune dysregulation. Annual Review of Immunology, 23, 447–485. https://doi.org/10.1146/annurev.immunol.23.021704.115643
Balcázar‐Hernández, L., Huerta‐Martínez, H., Garrido Magaña, E., Nishimura‐Meguro, E., Jiménez Márquez, A., & Rivera‐Hernández, A. (2023). Burden in primary informal caregivers of children and adolescents with type 1 diabetes: Is it associated with depression, family dysfunction, and glycemic control? Frontiers in Endocrinology, 13, 1089160. https://doi.org/10.3389/fendo.2022.1089160
Bluestone, J. A., Buckner, J. H., & Herold, K. C. (2021). Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science, 373, 510–516. https://clinicaltrials.gov
Bushnell, G. G., Hardas, T. P., Hartfield, R. M., Zhang, Y., Oakes, R. S., Ronquist, S., Chen, H., Rajapakse, I., Wicha, M. S., Jeruss, J. S., & Shea, L. D. (2019). Biomaterial scaffolds recruit an aggressive population of metastatic tumor cells in vivo. Cancer Research, 79(8), 2042–2053. https://doi.org/10.1158/0008-5472.CAN-18-2502
Carrero, J. A., McCarthy, D. P., Ferris, S. T., Wan, X., Hu, H., Zinselmeyer, B. H., Vomund, A. N., & Unanue, E. R. (2017). Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 114(48), 10418. https://doi.org/10.1073/pnas.1713543114
Commissariat, P. V., Harrington, K. R., Whitehouse, A. L., Miller, K. M., Hilliard, M. E., Van Name, M., DeSalvo, D. J., Tamborlane, W. V., Anderson, B. J., DiMeglio, L. A., & Laffel, L. M. (2020). “I'm essentially his pancreas”: Parent perceptions of diabetes burden and opportunities to reduce burden in the care of children <8 years old with type 1 diabetes. Pediatric Diabetes, 21(2), 377–383. https://doi.org/10.1111/pedi.12956
Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C. A. K., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., … Uhlén, M. (2014). Analysis of the human tissue‐specific expression by genome‐wide integration of transcriptomics and antibody‐based proteomics. Molecular & Cellular Proteomics, 13(2), 397–406. https://doi.org/10.1074/mcp.M113.035600
Galavi, H., Noorzehi, N., Saravani, R., Sargazi, S., Mollashahee‐Kohkan, F., & Shahraki, H. (2018). Genetic polymorphism in ADRB‐1 is associated with type 2 diabetes susceptibility in Iranian population. Gene Reports, 12, 171–174. https://doi.org/10.1016/j.genrep.2018.06.019
Gardner, G., & Fraker, C. A. (2021). Natural killer cells as key mediators in type I diabetes immunopathology. Frontiers in Immunology, 12, 722979. https://doi.org/10.3389/fimmu.2021.722979
Graham, S., Yuan, J. P., & Ma, R. (2012). Canonical transient receptor potential channels in diabetes. Experimental Biology and Medicine, 237(2). https://doi.org/10.1258/ebm.2011.011208
Gregory, G. A., Robinson, T. I. G., Linklater, S. E., Wang, F., Colagiuri, S., de Beaufort, C., Donaghue, K. C., Magliano, D. J., Maniam, J., Orchard, T. J., Rai, P., Ogle, G. D., Harding, J. L., Wander, P. L., Zhang, X., Li, X., Karuranga, S., Chen, H., Sun, H., … Ma, R. C. (2022). Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. The Lancet Diabetes & Endocrinology, 10(10), 741–760. https://doi.org/10.1016/S2213-8587(22)00218-2
Hendley, M. A., Isely, C., Murphy, K. P., Hall, H. E., Annamalai, P., & Gower, R. M. (2020). Scaffold implant into the epididymal adipose tissue protects mice from high fat diet induced ectopic lipid accumulation and hyperinsulinemia. Frontiers in Bioengineering and Biotechnology, 8, 562. https://doi.org/10.3389/fbioe.2020.00562
Hendley, M. A., Murphy, K. P., Isely, C., Struckman, H. L., Annamalai, P., & Gower, R. M. (2019). The host response to poly(lactide‐co‐glycolide) scaffolds protects mice from diet induced obesity and glucose intolerance. Biomaterials, 217, 119281. https://doi.org/10.1016/j.biomaterials.2019.119281
Herold, K. C., Bundy, B. N., Long, S. A., Bluestone, J. A., DiMeglio, L. A., Dufort, M. J., Gitelman, S. E., Gottlieb, P. A., Krischer, J. P., Linsley, P. S., Marks, J. B., Moore, W., Moran, A., Rodriguez, H., Russell, W. E., Schatz, D., Skyler, J. S., Tsalikian, E., Wherrett, D. K., … Greenbaum, C. J. (2019). An Anti‐CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. New England Journal of Medicine, 381(7), 603–613. https://doi.org/10.1056/nejmoa1902226
Heybrock, S., Kanerva, K., Meng, Y., Ing, C., Liang, A., Xiong, Z. J., Weng, X., Ah Kim, Y., Collins, R., Trimble, W., Pomès, R., Privé, G. G., Annaert, W., Schwake, M., Heeren, J., Lüllmann‐Rauch, R., Grinstein, S., Ikonen, E., Saftig, P., & Neculai, D. (2019). Lysosomal integral membrane protein‐2 (LIMP‐2/SCARB2) is involved in lysosomal cholesterol export. Nature Communications, 10(1), 3521. https://doi.org/10.1038/s41467-019-11425-0
Jacobsen, L. M., Bocchino, L., Evans‐Molina, C., DiMeglio, L., Goland, R., Wilson, D. M., Atkinson, M. A., Aye, T., Russell, W. E., Wentworth, J. M., Boulware, D., Geyer, S., & Sosenko, J. M. (2020). The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening. Diabetologia, 63(3), 588–596. https://doi.org/10.1007/s00125-019-05047-w
Jun, H., Yu, H., Gong, J., Jiang, J., Qiao, X., Perkey, E., Kim, D., Emont, M. P., Zestos, A. G., Cho, J. S., Liu, J., Kennedy, R. T., Maillard, I., Xu, X. Z. S., & Wu, J. (2018). An immune‐beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nature Medicine, 24(6), 814–822. https://doi.org/10.1038/s41591-018-0032-8
Jun, H. S., Yoon, C. S., Zbytnuik, L., Van Rooijen, N., & Yoon, J. W. (1999). The role of macrophages in T cell‐mediated autoimmune diabetes in nonobese diabetic mice. The Journal of Experimental Medicine, 189(2), 347–358. https://doi.org/10.1084/jem.189.2.347
Katz, J. D., Wang, B., Haskins, K., Benoist, C., & Mathis, D. (1993). Following a diabetogenic T cell from genesis through pathogenesis. Cell, 74(6), 1089–1100. https://doi.org/10.1016/0092-8674(93)90730-E
Keam, S. J. (2023). Teplizumab: First approval. Drugs, 83(5), 439–445. https://doi.org/10.1007/s40265-023-01847-y
Li, J., Akil, O., Rouse, S. L., McLaughlin, C. W., Matthews, I. R., Lustig, L. R., Chan, D. K., & Sherr, E. H. (2018). Deletion of Tmtc4 activates the unfolded protein response and causes postnatal hearing loss. Journal of Clinical Investigation, 128(11), 5150–5162. https://doi.org/10.1172/JCI97498
Lutzweiler, G., Halili, A. N., & Vrana, N. E. (2020). The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics, 12(7), 602. https://doi.org/10.3390/pharmaceutics12070602
Miller, S. D., Karpus, W. J., & Davidson, T. S. (2010). Experimental autoimmune encephalomyelitis in the mouse. Current Protocols in Immunology, 88, 1–18. https://doi.org/10.1002/0471142735.im1501s77
Miyazaki, A., Hanafusa, T., Yamada, K., Miyagawa, J., Fujino‐Kurihara, H., & Nakajima, H. (1985). Predominance of T lymphocytes in pancreatic islets and spleen of pre‐diabetic non‐obese diabetic (NOD) mice: A longitudinal study. Clinical and Experimental Immunology, 60(3), 622–633.
Morris, A. H., Hughes, K. R., Oakes, R. S., Cai, M. M., Miller, S. D., Irani, D. N., & Shea, L. D. (2020). Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nature Communications, 11(1), 3871. https://doi.org/10.1038/s41467-020-17629-z
Oakes, R. S., Bushnell, G. G., Orbach, S. M., Kandagatla, P., Zhang, Y., Morris, A. H., Hall, M. S., LaFaire, P., Decker, J. T., Hartfield, R. M., Brooks, M. D., Wicha, M. S., Jeruss, J. S., & Shea, L. D. (2020). Metastatic conditioning of myeloid cells at a subcutaneous synthetic niche reflects disease progression and predicts therapeutic outcomes. Cancer Research, 80(3), 602–612. https://doi.org/10.1158/0008-5472.CAN-19-1932
Petrelli, A., Popp, S. K., Fukuda, R., Parish, C. R., Bosi, E., & Simeonovic, C. J. (2022). The contribution of neutrophils and NETs to the development of type 1 diabetes. Frontiers in Immunology, 13, 930553. https://doi.org/10.3389/fimmu.2022.930553
Prasad, S., Neef, T., Xu, D., Podojil, J. R., Getts, D. R., Shea, L. D., & Miller, S. D. (2018). Tolerogenic Ag‐PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. Journal of Autoimmunity, 89, 112–124. https://doi.org/10.1016/j.jaut.2017.12.010
Price, J. D., & Tarbell, K. V. (2015). The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases. Frontiers in Immunology, 6, 00288. https://doi.org/10.3389/fimmu.2015.00288
Pugliese, A. (2016). Insulitis in the pathogenesis of type 1 diabetes. Pediatric Diabetes, 17, 31–36. https://doi.org/10.1111/pedi.12388
Ramos, E. L., Dayan, C. M., Chatenoud, L., Sumnik, Z., Simmons, K. M., Szypowska, A., Gitelman, S. E., Knecht, L. A., Niemoeller, E., Tian, W., & Herold, K. C. (2023). Teplizumab and β‐Cell function in newly diagnosed type 1 diabetes. New England Journal of Medicine, 389(23), 2151–2161. https://doi.org/10.1056/nejmoa2308743
Rao, S. S., Bushnell, G. G., Azarin, S. M., Spicer, G., Aguado, B. A., Stoehr, J. R., Jiang, E. J., Backman, V., Shea, L. D., & Jeruss, J. S. (2016). Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Research, 76(18), 5209–5218. https://doi.org/10.1158/0008-5472.CAN-15-2106
Reichert, M., & Rustgi, A. K. (2011). Pancreatic ductal cells in development, regeneration, and neoplasia. Journal of Clinical Investigation, 121(12), 4572–4578. https://doi.org/10.1172/JCI57131
Sakaguchi, M., Cai, W., Wang, C. H., Cederquist, C. T., Damasio, M., Homan, E. P., Batista, T., Ramirez, A. K., Gupta, M. K., Steger, M., Wewer Albrechtsen, N. J., Singh, S. K., Araki, E., Mann, M., Enerbäck, S., & Kahn, C. R. (2019). FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nature Communications, 10(1), 1582. https://doi.org/10.1038/s41467-019-09418-0
Sharma, N. K., Langberg, K. A., Mondal, A. K., & Das, S. K. (2013). Phospholipid biosynthesis genes and susceptibility to obesity: Analysis of expression and polymorphisms. PLoS ONE, 8(5), e65303. https://doi.org/10.1371/journal.pone.0065303
Sims, E. K., Bundy, B. N., Stier, K., Serti, E., Lim, N., Long, S. A., Geyer, S. M., Moran, A., Greenbaum, C. J., Evans‐Molina, C., Herold, K. C., DiMeglio, L. A., Gitelman, S. E., Gottlieb, P. A., Marks, J. B., Moore, W., Rodriguez, H., Russell, W. E., Schatz, D., … Ziegler, A. G. (2021). Teplizumab improves and stabilizes beta cell function in antibody‐positive high‐risk individuals. Science Translational Medicine, 13(583), eabc8980. https://doi.org/10.1126/scitranslmed.abc8980
Srivastava, S., Li, Z., Soomro, I., Sun, Y., Wang, J., Bao, L., Coetzee, W. A., Stanley, C. A., Li, C., & Skolnik, E. Y. (2018). Regulation of KATP channel trafficking in pancreatic β‐cells by protein histidine phosphorylation. Diabetes, 67(5), 849–860. https://doi.org/10.2337/db17-1433
Tamborlane, W. V., Beck, R. W., Bode, B. W., Buckingham, B., Chase, H. P., Clemons, R., Fiallo‐Scharer, R., Fox, L. A., Gilliam, L. K., Hirsch, I. B., Huang, E. S., Kollman, C., Kowalski, A. J., Laffel, L., Lawrence, J. M., Lee, J., Mauras, N., O'Grady, M., Ruedy, K. J., & Rodriguez, H. (2008). Continuous glucose monitoring and intensive treatment of type 1 diabetes. New England Journal of Medicine, 359(14), 1464–1476. https://doi.org/10.1056/NEJMc082243
Taplin, C. E., & Barker, J. M. (2008). Autoantibodies in type 1 diabetes. Autoimmunity, 41(1), 11–18. https://doi.org/10.1080/08916930701619169
Urie, R. R., Morris, A., Farris, D., Hughes, E., Xiao, C., Chen, J., Lombard, E., Feng, J., Li, J. Z., Goldstein, D. R., & Shea, L. D. (2024). Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts. Science Advances, 10, 6178. https://www.science.org
Wang, J., Ocadiz‐Ruiz, R., Hall, M. S., Bushnell, G. G., Orbach, S. M., Decker, J. T., Raghani, R. M., Zhang, Y., Morris, A. H., Jeruss, J. S., & Shea, L. D. (2023). A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nature Communications, 14(1), 4790. https://doi.org/10.1038/s41467-023-40478-5
Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K., & Morgan, N. G. (2009). Analysis of islet inflammation in human type 1 diabetes. Clinical and Experimental Immunology, 155(2), 173–181. https://doi.org/10.1111/j.1365-2249.2008.03860.x
Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass.), 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141
Zhang, J., Xiao, Y., Hu, J., Liu, S., Zhou, Z., & Xie, L. (2022). Lipid metabolism in type 1 diabetes mellitus: Pathogenetic and therapeutic implications. Frontiers in Immunology, 13, 999108. https://doi.org/10.3389/fimmu.2022.999108
Zhang, R., Wang, Y., Wu, A., Wang, J., & Zhang, J. (2023). Strategies of targeting CYP51 for IFIs therapy: Emerging prospects, opportunities and challenges. European Journal of Medicinal Chemistry, 259, 115658. https://doi.org/10.1016/j.ejmech.2023.115658
Ziegler, A. G., Rewers, M., Simell, O., Simell, T., Lempainen, J., Steck, A., Winkler, C., Ilonen, J., Veijola, R., Knip, M., Bonifacio, E., & Eisenbarth, G. S. (2013). Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. Journal of the American Medical Association, 309(23), 2473–2479. https://jamanetwork.com/