Gamma amplitude-envelope correlations are strongly elevated within hyperexcitable networks in focal epilepsy.
Cortical hyperexcitability
Electrocorticography
Focal epilepsy
Functional connectivity
Gamma amplitude envelope correlations
Seizure onset zones
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Jul 2024
31 Jul 2024
Historique:
received:
23
04
2024
accepted:
08
07
2024
medline:
1
8
2024
pubmed:
1
8
2024
entrez:
31
7
2024
Statut:
epublish
Résumé
Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40-200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores > 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy.
Identifiants
pubmed: 39085280
doi: 10.1038/s41598-024-67120-8
pii: 10.1038/s41598-024-67120-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17736Informations de copyright
© 2024. The Author(s).
Références
Spencer, S. S. Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).
pubmed: 11906505
doi: 10.1046/j.1528-1157.2002.26901.x
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).
pubmed: 10660394
doi: 10.1056/NEJM200002033420503
Rosenow, F. & Lüders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).
pubmed: 11522572
doi: 10.1093/brain/124.9.1683
Lüders, H. O., Najm, I., Nair, D., Widdess-Walsh, P. & Bingman, W. The epileptogenic zone: General principles. Epileptic Disorders 8, S1–S9 (2006).
pubmed: 17012067
doi: 10.1684/j.1950-6945.2006.tb00204.x
Jehi, L. E., Silveira, D. C., Bingaman, W. & Najm, I. Temporal lobe epilepsy surgery failures: Predictors of seizure recurrence, yield of reevaluation, and outcome following reoperation. J. Neurosurg. 113, 1186–1194 (2010).
pubmed: 20831360
doi: 10.3171/2010.8.JNS10180
Najm, I. et al. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 54, 772–782 (2013).
pubmed: 23586531
doi: 10.1111/epi.12152
Zijlmans, M., Zweiphenning, W. & van Klink, N. Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev. Neurol. 15, 594–606 (2019).
pubmed: 31341275
doi: 10.1038/s41582-019-0224-y
Papadelis, C. & Perry, M. S. Seminars in Pediatric Neurology, Elsevier, 100919.
Bernabei, J. M. et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 146, 2248–2258 (2023).
pubmed: 36623936
pmcid: 10232272
doi: 10.1093/brain/awad007
Badawy, R., Freestone, D., Lai, A. & Cook, M. Epilepsy: Ever-changing states of cortical excitability. Neuroscience 222, 89–99 (2012).
pubmed: 22813999
doi: 10.1016/j.neuroscience.2012.07.015
Badawy, R. A., Curatolo, J. M., Newton, M., Berkovic, S. F. & Macdonell, R. A. Changes in cortical excitability differentiate generalized and focal epilepsy. Ann. Neurol. 61, 324–331 (2007).
pubmed: 17358004
doi: 10.1002/ana.21087
Porciatti, V., Bonanni, P., Fiorentini, A. & Guerrini, R. Lack of cortical contrast gain control in human photosensitive epilepsy. Nat. Neurosci. 3, 259–263 (2000).
pubmed: 10700258
doi: 10.1038/72972
Frauscher, B. et al. High-frequency oscillations: the state of clinical research. Epilepsia 58, 1316–1329 (2017).
pubmed: 28666056
pmcid: 5806699
doi: 10.1111/epi.13829
Roehri, N. & Bartolomei, F. Are high-frequency oscillations better biomarkers of the epileptogenic zone than spikes?. Curr. Opin. Neurol. 32, 213–219 (2019).
pubmed: 30694920
doi: 10.1097/WCO.0000000000000663
George, D. D., Ojemann, S. G., Drees, C. & Thompson, J. A. Stimulation mapping using stereoelectroencephalography: Current and future directions. Front. Neurol. 11, 320 (2020).
pubmed: 32477236
pmcid: 7238877
doi: 10.3389/fneur.2020.00320
Trébuchon, A. & Chauvel, P. Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. J. Clin. Neurophysiol. 33, 511–521 (2016).
pubmed: 27918346
doi: 10.1097/WNP.0000000000000313
Frauscher, B. et al. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 64, S49 (2023).
pubmed: 37194746
doi: 10.1111/epi.17640
Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).
pubmed: 27939100
doi: 10.1016/j.seizure.2016.11.003
Ramantani, G. et al. Passive and active markers of cortical excitability in epilepsy. Epilepsia 64, S25 (2023).
pubmed: 36897228
doi: 10.1111/epi.17578
Valentin, A. et al. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain 125, 1709–1718 (2002).
pubmed: 12135963
doi: 10.1093/brain/awf187
Badawy, R. A., Harvey, A. S. & Macdonell, R. A. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy-part 2. J. Clin. Neurosci. 16, 485–500 (2009).
pubmed: 19230676
doi: 10.1016/j.jocn.2008.10.001
Badawy, R. A., Harvey, A. S. & Macdonell, R. A. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy–part 1. J. Clin. Neurosci. 16, 355–365 (2009).
pubmed: 19124246
doi: 10.1016/j.jocn.2008.08.026
He, B. et al. Electrophysiological brain connectivity: Theory and implementation. IEEE Trans. Biomed. Eng. 66, 2115–2137 (2019).
doi: 10.1109/TBME.2019.2913928
O’Neill, G. C. et al. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 180, 559–576 (2018).
pubmed: 28988134
doi: 10.1016/j.neuroimage.2017.10.003
Bastos, A. M. & Schoffelen, J.-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016).
pubmed: 26778976
pmcid: 4705224
doi: 10.3389/fnsys.2015.00175
Lagarde, S., Bénar, C.-G., Wendling, F. & Bartolomei, F. Interictal functional connectivity in focal refractory epilepsies investigated by intracranial EEG. Brain Conn. 12, 850–869 (2022).
doi: 10.1089/brain.2021.0190
Antony, A. R. et al. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy. PloS One 8, e77916 (2013).
pubmed: 24205027
pmcid: 3813548
doi: 10.1371/journal.pone.0077916
Jiang, H. et al. Interictal SEEG resting-state connectivity localizes the seizure onset zone and predicts seizure outcome. Adv. Sci. 9, 2200887 (2022).
doi: 10.1002/advs.202200887
Lagarde, S. et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 141, 2966–2980 (2018).
pubmed: 30107499
doi: 10.1093/brain/awy214
Malladi, R., Kalamangalam, G., Tandon, N. & Aazhang, B. Identifying seizure onset zone from the causal connectivity inferred using directed information. IEEE J. Select. Topics Signal Process. 10, 1267–1283 (2016).
doi: 10.1109/JSTSP.2016.2601485
Wang, A. et al. Resting-state SEEG-based brain network analysis for the detection of epileptic area. J. Neurosci. Methods 390, 109839 (2023).
pubmed: 36933706
doi: 10.1016/j.jneumeth.2023.109839
Wilke, C., Worrell, G. & He, B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52, 84–93 (2011).
pubmed: 21126244
doi: 10.1111/j.1528-1167.2010.02785.x
Zaveri, H. P. et al. Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area. Neuroreport 20, 891–895 (2009).
pubmed: 19424095
doi: 10.1097/WNR.0b013e32832c78e0
Zweiphenning, W. et al. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy. NeuroImage Clin. 12, 928–939 (2016).
pubmed: 27882298
pmcid: 5114532
doi: 10.1016/j.nicl.2016.09.014
Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).
pubmed: 16081741
doi: 10.1126/science.1110913
Mukamel, R. et al. Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapp. 32, 1181–1193 (2011).
doi: 10.1002/hbm.21100
Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).
pubmed: 17686438
doi: 10.1016/j.cub.2007.06.066
Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).
pubmed: 18987189
pmcid: 2715840
doi: 10.1523/JNEUROSCI.2848-08.2008
Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).
pubmed: 19864573
pmcid: 3001247
doi: 10.1523/JNEUROSCI.2041-09.2009
Margineanu, D. G. Epileptic hypersynchrony revisited. Neuroreport 21, 963–967 (2010).
pubmed: 20736863
doi: 10.1097/WNR.0b013e32833ed111
Penfield, W. & Jasper, H. Epilepsy and the functional anatomy of the human brain. (1954).
LaViolette, P. S. et al. Three-dimensional visualization of subdural electrodes for presurgical planning. Neurosurgery 68, 152 (2011).
pubmed: 21206319
Mewett, D. T., Nazeran, H. & Reynolds, K. J. in 2001 conference proceedings of the 23rd annual international conference of the IEEE Engineering in Medicine and Biology Society. 2190–2193 (IEEE).
Bruña, R., Maestú, F. & Pereda, E. Phase locking value revisited: Teaching new tricks to an old dog. J. Neural Eng. 15, 056011 (2018).
pubmed: 29952757
doi: 10.1088/1741-2552/aacfe4
Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Human Brain Mapp. 8, 194–208 (1999).
doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
Aydore, S., Pantazis, D. & Leahy, R. M. A note on the phase locking value and its properties. Neuroimage 74, 231–244 (2013).
pubmed: 23435210
doi: 10.1016/j.neuroimage.2013.02.008
Mormann, F., Lehnertz, K., David, P. & Elger, C. E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000).
doi: 10.1016/S0167-2789(00)00087-7
García-Prieto, J., Bajo, R. & Pereda, E. Efficient computation of functional brain networks: Toward real-time functional connectivity. Front. Neuroinf. 11, 8 (2017).
doi: 10.3389/fninf.2017.00008
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).
pubmed: 19819337
doi: 10.1016/j.neuroimage.2009.10.003
Tewarie, P., van Dellen, E., Hillebrand, A. & Stam, C. J. The minimum spanning tree: An unbiased method for brain network analysis. Neuroimage 104, 177–188 (2015).
pubmed: 25451472
doi: 10.1016/j.neuroimage.2014.10.015
Crone, N. E., Korzeniewska, A. & Franaszczuk, P. J. Cortical gamma responses: Searching high and low. Int. J. Psychophysiol. 79, 9–15 (2011).
pubmed: 21081143
doi: 10.1016/j.ijpsycho.2010.10.013
Crone, N. E. et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain J. Neurol. 121, 2271–2299 (1998).
doi: 10.1093/brain/121.12.2271
Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).
pubmed: 17329441
pmcid: 6673496
doi: 10.1523/JNEUROSCI.3886-06.2007
Pfurtscheller, G. EEG event-related desynchronization (ERD) and synchronization (ERS). Electroencephalograp. Clin. Neurophysiol. 1, 26 (1997).
doi: 10.1016/S0013-4694(97)88021-6
Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).
pubmed: 16973878
pmcid: 2628289
doi: 10.1126/science.1128115
Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cognit. Sci. 14, 506–515 (2010).
doi: 10.1016/j.tics.2010.09.001
Florin, E. & Baillet, S. The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. Neuroimage 111, 26–35 (2015).
pubmed: 25680519
doi: 10.1016/j.neuroimage.2015.01.054
Osipova, D., Hermes, D. & Jensen, O. Gamma power is phase-locked to posterior alpha activity. PloS One 3, e3990 (2008).
pubmed: 19098986
pmcid: 2602598
doi: 10.1371/journal.pone.0003990
Whittingstall, K. & Logothetis, N. K. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64, 281–289 (2009).
pubmed: 19874794
doi: 10.1016/j.neuron.2009.08.016
Voytek, B. et al. Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Human Neurosci. 4, 191 (2010).
doi: 10.3389/fnhum.2010.00191
Alper, K. et al. Localizing epileptogenic regions in partial epilepsy using three-dimensional statistical parametric maps of background EEG source spectra. NeuroImage 39, 1257–1265 (2008).
pubmed: 18024085
doi: 10.1016/j.neuroimage.2007.09.041
Gallen, C. et al. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia 38, 452–460 (1997).
pubmed: 9118851
doi: 10.1111/j.1528-1157.1997.tb01735.x
Ishibashi, H. et al. Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region. J. Neurosurg. 96, 724–730 (2002).
pubmed: 11990813
doi: 10.3171/jns.2002.96.4.0724
Vanrumste, B., Jones, R. D., Bones, P. J. & Carroll, G. J. Slow-wave activity arising from the same area as epileptiform activity in the EEG of paediatric patients with focal epilepsy. Clin. Neurophysiol. 116, 9–17 (2005).
pubmed: 15589177
doi: 10.1016/j.clinph.2004.07.032
Tao, J. X. et al. Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 52, 467–476 (2011).
pubmed: 21204828
doi: 10.1111/j.1528-1167.2010.02918.x
Ali, R. et al. Phase-amplitude coupling measures for determination of the epileptic network: A methodological comparison. J. Neurosci. Methods 370, 109484 (2022).
pubmed: 35065957
doi: 10.1016/j.jneumeth.2022.109484
Hashimoto, H. et al. Phase-amplitude coupling between infraslow and high-frequency activities well discriminates between the preictal and interictal states. Sci. Rep. 11, 17405 (2021).
pubmed: 34465798
pmcid: 8408139
doi: 10.1038/s41598-021-96479-1
Amiri, M., Frauscher, B. & Gotman, J. Phase-amplitude coupling is elevated in deep sleep and in the onset zone of focal epileptic seizures. Front. Human Neurosci. 10, 387 (2016).
doi: 10.3389/fnhum.2016.00387
Ko, A. L., Weaver, K. E., Hakimian, S. & Ojemann, J. G. Identifying functional networks using endogenous connectivity in gamma band electrocorticography. Brain Conn. 3, 491–502 (2013).
doi: 10.1089/brain.2013.0157
Arnulfo, G. et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nature Commun. 11, 5363 (2020).
doi: 10.1038/s41467-020-18975-8
Stam, C. et al. The trees and the forest: characterization of complex brain networks with minimum spanning trees. Int. J. Psychophysiol. 92, 129–138 (2014).
pubmed: 24726900
doi: 10.1016/j.ijpsycho.2014.04.001
Corona, L. et al. Non-invasive mapping of epileptogenic networks predicts surgical outcome. Brain 146, 1916–1931 (2023).
pubmed: 36789500
pmcid: 10151194
doi: 10.1093/brain/awac477
Rijal, S. et al. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci. Rep. 13, 9622 (2023).
pubmed: 37316544
pmcid: 10267141
doi: 10.1038/s41598-023-36551-0
Li, A. et al. Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw. Neurosci. 2, 218–240 (2018).
pubmed: 30215034
pmcid: 6130438
doi: 10.1162/netn_a_00043
Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).
pubmed: 21532743
pmcid: 3075230
doi: 10.1371/journal.pbio.1000610
Ray, S. & Maunsell, J. H. Do gamma oscillations play a role in cerebral cortex?. Trends Cogn. Sci. 19, 78–85 (2015).
pubmed: 25555444
doi: 10.1016/j.tics.2014.12.002
Whittington, M. A., Cunningham, M. O., LeBeau, F. E., Racca, C. & Traub, R. D. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71, 92–106 (2011).
pubmed: 21154913
doi: 10.1002/dneu.20814
Misra, A., Long, X., Sperling, M. R., Sharan, A. D. & Moxon, K. A. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin. Epilepsia 59, 636–649 (2018).
pubmed: 29442363
doi: 10.1111/epi.14007
Serafini, R. & Loeb, J. A. Enhanced slow waves at the periphery of human epileptic foci. Clin. Neurophysiol. 126, 1117–1123 (2015).
pubmed: 25454344
doi: 10.1016/j.clinph.2014.08.023
Trevelyan, A. J. & Schevon, C. A. How inhibition influences seizure propagation. Neuropharmacology 69, 45–54 (2013).
pubmed: 22722026
doi: 10.1016/j.neuropharm.2012.06.015
Jiruska, P. et al. Synchronization and desynchronization in epilepsy: Controversies and hypotheses. J. Physiol. 591, 787–797 (2013).
pubmed: 23184516
doi: 10.1113/jphysiol.2012.239590
Cimbalnik, J. et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 130, 1945–1953 (2019).
pubmed: 31465970
pmcid: 6759804
doi: 10.1016/j.clinph.2019.07.024
Varatharajah, Y. et al. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. J. Neural Eng. 15, 046035 (2018).
pubmed: 29855436
pmcid: 6108188
doi: 10.1088/1741-2552/aac960