Response of spontaneous plant communities to microhabitats in a riparian corridor in Beijing, China.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Jul 2024
31 Jul 2024
Historique:
received:
03
01
2024
accepted:
25
07
2024
medline:
1
8
2024
pubmed:
1
8
2024
entrez:
31
7
2024
Statut:
epublish
Résumé
With the increasing urban environmental problems, spontaneous vegetation has been gradually emphasized for high ecological value, whose distribution has been reported as strongly influenced by fine-scale environmental factors. As one of the major zones for urban spontaneous vegetation distribution, urban riparian corridors are well suited for research on the response of spontaneous plants to microhabitats. Taking the Wenyu River-North Canal in Beijing as the study site, we measured six microhabitat factors, including the level of maintenance and visitor activity, canopy density, litter thickness, and distance to water and road, to investigate their effects on spontaneous plant assemblages. The results showed that spontaneous plants respond significantly to fine-scale habitat variation, and were more responsive to human disturbance than other factors. Compared with diversity indicators, the functional trait compositions were more significantly correlated with microhabitat factors. Under lower maintenance of plants, the spontaneous communities had a higher invasion risk for plants. Thick litter can impede the occurrence of invasive species while favoring the growth of native ones. Our findings are important for furthering understanding of the spontaneous plant community establishment, and can serve as a good reference for the maintenance and management of spontaneous plants in urban riparian corridors.
Identifiants
pubmed: 39085325
doi: 10.1038/s41598-024-68618-x
pii: 10.1038/s41598-024-68618-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17642Subventions
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : National Natural Science Foundation of China
ID : 32171860
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Organisme : Beijing Municipal Science and Technology Project
ID : D171100007217003
Informations de copyright
© 2024. The Author(s).
Références
Bonthoux, S., Voisin, L., Bouché-Pillon, S. & Chollet, S. More than weeds: Spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 185, 163–172 (2019).
doi: 10.1016/j.landurbplan.2019.02.009
Li, X.-P., Fan, S.-X., Guan, J.-H., Zhao, F. & Dong, L. Diversity and influencing factors on spontaneous plant distribution in Beijing Olympic Forest Park. Landsc. Urban Plan. 181, 157–168 (2019).
doi: 10.1016/j.landurbplan.2018.09.018
Zhou, Y. et al. Taking spontaneous plants as a natural strategy for vegetation restoration in construction and demolition waste landfills: A case study in Suzhou China. Environ. Sci. Pollut. Res. 31, 25823–25835 (2024).
doi: 10.1007/s11356-024-32831-y
Hwang, Y. H. & Jonathan Yue, Z. E. Intended wildness: Utilizing spontaneous growth for biodiverse green spaces in a tropical city. J. Landsc. Archit. 14, 54–63 (2019).
doi: 10.1080/18626033.2019.1623548
Ilie, D. & Cosmulescu, S. Spontaneous plant diversity in urban contexts: A review of its impact and importance. Diversity 15, 277 (2023).
doi: 10.3390/d15020277
Li, C. et al. Comparative study on the effects of soil quality improvement between urban spontaneous groundcover and lawn. Ecol. Indic. 148, 110056 (2023).
doi: 10.1016/j.ecolind.2023.110056
Schrieke, D., Szota, C., Williams, N. S. G. & Farrell, C. Evaluating the effectiveness of spontaneous vegetation for stormwater mitigation on green roofs. Sci. Total Environ. 898, 165643 (2023).
pubmed: 37474045
doi: 10.1016/j.scitotenv.2023.165643
Řehounková, K., Lencová, K. & Prach, K. Spontaneous establishment of woodland during succession in a variety of central European disturbed sites. Ecol. Eng. 111, 94–99 (2018).
doi: 10.1016/j.ecoleng.2017.11.016
Zhang, M. et al. How urban riparian corridors affect the diversity of spontaneous herbaceous plants as pollination and dispersal routes - a case of the Wenyu River- North Canal in Beijing China. Ecol. Indic. 146, 109869 (2023).
doi: 10.1016/j.ecolind.2023.109869
Sikorska, D., Ciężkowski, W., Babańczyk, P., Chormański, J. & Sikorski, P. Intended wilderness as a nature-based solution: Status, identification and management of urban spontaneous vegetation in cities. Urban For. Urban Green. 62, 127155 (2021).
doi: 10.1016/j.ufug.2021.127155
Yu, K., Li, D. & Li, N. The evolution of Greenways in China. Landsc. Urban Plan. 76, 223–239 (2006).
doi: 10.1016/j.landurbplan.2004.09.034
Bryant, M. M. Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landsc. Urban Plan. 76, 23–44 (2006).
doi: 10.1016/j.landurbplan.2004.09.029
Beijing Municipal Forestry and Parks Bureau. Beijing urban green space classification management scheme. https://yllhj.beijing.gov.cn/zwgk/fgwj/qtwj/202201/t20220125_2599705.shtml (2021).
Li, X.-P., Fan, S.-X., Hao, P.-Y. & Dong, L. Temporal variations of spontaneous plants colonizing in different type of planted vegetation-a case of Beijing Olympic Forest Park. Urban For. Urban Green. 46, 126459 (2019).
doi: 10.1016/j.ufug.2019.126459
Chang, C.-R., Chen, M.-C. & Su, M.-H. Natural versus human drivers of plant diversity in urban parks and the anthropogenic species-area hypotheses. Landsc. Urban Plan. 208, 104023 (2021).
doi: 10.1016/j.landurbplan.2020.104023
Qian, S. et al. Urban growth and topographical factors shape patterns of spontaneous plant community diversity in a mountainous city in southwest China. Urban For. Urban Green. 55, 126814 (2020).
doi: 10.1016/j.ufug.2020.126814
Liu, R. et al. Urban spontaneous plant richness in response to the 2D/3D building and green space patterns in a highly urbanized area. Ecol. Indic. 154, 110852 (2023).
doi: 10.1016/j.ecolind.2023.110852
Gao, Z. et al. Beta diversity of urban spontaneous plants and its drivers in 9 major cities of Yunnan province China. Landsc. Urban Plan. 234, 104741 (2023).
doi: 10.1016/j.landurbplan.2023.104741
Zhang, H.-L. et al. Habitat heterogeneity explains cultivated and spontaneous plant richness in Haikou City China. Ecol. Indic. 154, 110713 (2023).
doi: 10.1016/j.ecolind.2023.110713
Li, X. et al. Driving effects of land use and landscape pattern on different spontaneous plant life forms along urban river corridors in a fast-growing city. Sci. Total Environ. 876, 162775 (2023).
pubmed: 36914130
doi: 10.1016/j.scitotenv.2023.162775
Li, X. et al. Urban park attributes as predictors for the diversity and composition of spontaneous plants—A case in Beijing China. Urban For. Urban Green. 91, 128185 (2024).
doi: 10.1016/j.ufug.2023.128185
Hu, S. et al. Characterizing composition profile and diversity patterns of spontaneous urban plants across China’s major cities. J. Environ. Manag. 317, 115445 (2022).
doi: 10.1016/j.jenvman.2022.115445
Kondratyeva, A. et al. Urbanization effects on biodiversity revealed by a two-scale analysis of species functional uniqueness vs. Redundancy. Front. Ecol. Evol. 8, 73 (2020).
doi: 10.3389/fevo.2020.00073
Chollet, S., Brabant, C., Tessier, S. & Jung, V. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landsc. Urban Plan. 180, 121–124 (2018).
doi: 10.1016/j.landurbplan.2018.08.009
Chen, Y. et al. Homogenization of tree species diversity in urban green spaces along a temperature gradient in eastern China. Urban For. Urban Green. 66, 127388 (2021).
doi: 10.1016/j.ufug.2021.127388
Beijing municipal commission of Planning and Natural resource. Beijing green space system planning. https://yllhj.beijing.gov.cn/zwgk/ghxx/gh/201911/t20191129_734967.shtml (2019).
Zhang, J. T. Quantitative ecology (in Chinese) (Science Press, 2011).
Compilation committee of the Flora of China. Flora of China (in Chinese) (Science Press, 2004).
He, S. Y. Flora of Beijing (in Chinese) (Beijing Publishing House, 1993).
Kattge, J. et al. TRY—a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).
doi: 10.1111/j.1365-2486.2011.02451.x
Ma, J.S. The Checklist of the Invasive Plants (in Chinese). (High Education Press, 2013).
Royal Botanic Gardens Kew. Seed information database (SID). (2022) http://data.kew.org/sid/ .
Fan, S., Zhang, M., Li, Y., Li, K. & Dong, L. Impacts of composition and canopy characteristics of plant communities on microclimate and airborne particles in Beijing China. Sustainability 13, 4791 (2021).
doi: 10.3390/su13094791
Beijing Municipal Forestry and Parks Bureau. Notification on the quality rating of urban green areas in 2020. https://yllhj.beijing.gov.cn/zwgk/gsgg/202011/t20201123_2142212.shtml (2020).
Beijing Municipal Forestry and Parks Bureau. Technical specifications for maintenance of urban green space. https://yllhj.beijing.gov.cn/sdlh/ylkj/bzgf/202207/t20220701_2757537.shtml (2022).
R Core Team. R: A language and environment for statistical computing. (MSOR connections, 2014).
O’Keeffe, J. Measuring biological diversity. Afr. J. Aquat. Sci. 29, 285–286 (2004).
doi: 10.2989/16085910409503825
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
pubmed: 20380219
doi: 10.1890/08-2244.1
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
doi: 10.1016/0006-3207(92)91201-3
Swenson, N. G. Functional and phylogenetic ecology in R (Springer, 2014). https://doi.org/10.1007/978-1-4614-9542-0 .
doi: 10.1007/978-1-4614-9542-0
Oksanen, J. et al. vegan: Community ecology package. Software http://CRAN.R-project.org/package=vegan (2012).
Jin, Y. & Qian, H. V. PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335–339 (2022).
pubmed: 35967255
pmcid: 9363651
doi: 10.1016/j.pld.2022.05.005
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
pubmed: 20395285
doi: 10.1093/bioinformatics/btq166
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc.: Ser. B (Methodological) 26, 211–243 (1964).
doi: 10.1111/j.2517-6161.1964.tb00553.x
Bivand, R. R packages for analyzing spatial data: A comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).
doi: 10.1111/gean.12319
Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).
doi: 10.1890/11-1183.1
Nizamani, M. M., Padullés Cubino, J., Harris, A., Guo, L.-Y. & Wang, H.-F. Spatial patterns and drivers of plant diversity in the tropical city of Sanya China. Urban For. Urban Green. 79, 127818 (2023).
doi: 10.1016/j.ufug.2022.127818
De Frenne, P. Novel light regimes in European forests. Nat. Ecol. Evol. 8, 196–202 (2023).
pubmed: 38012364
doi: 10.1038/s41559-023-02242-2
Lendzion, J. & Leuschner, C. Temperate forest herbs are adapted to high air humidity—evidence from climate chamber and humidity manipulation experiments in the field. Can. J. For. Res. 39, 2332–2342 (2009).
doi: 10.1139/X09-143
Chelli, S. et al. Multiple drivers of functional diversity in temperate forest understories: Climate, soil, and forest structure effects. Sci. Total Environ. 916, 170258 (2024).
pubmed: 38246378
doi: 10.1016/j.scitotenv.2024.170258
Decocq, G. et al. Plant diversity in a managed temperate deciduous forest: Understorey response to two silvicultural systems. J. Appl. Ecol. 41, 1065–1079 (2004).
doi: 10.1111/j.0021-8901.2004.00960.x
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).
doi: 10.1146/annurev.ecolsys.33.010802.150452
Nguyen, N.-A., Eskelson, B. N. I., Gergel, S. E. & Murray, T. The occurrence of invasive plant species differed significantly across three urban greenspace types of Metro Vancouver Canada. Urban For. Urban Green. 59, 126999 (2021).
doi: 10.1016/j.ufug.2021.126999
Hamza, F. Impacts of human activities on diversity of wintering waterbirds: Assessment in Mediterranean coastal area. Ocean Coastal Manag. 198, 105317 (2020).
doi: 10.1016/j.ocecoaman.2020.105317
Matuoka, M. A., Benchimol, M., Almeida-Rocha, J. M. D. & Morante-Filho, J. C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 116, 106471 (2020).
doi: 10.1016/j.ecolind.2020.106471
Wegner, B. & Wolter, C. Mixed responses to paddling frequency of a bird community dominated by terrestrial species in a paddling tourism hotspot. J. Nat. Conserv. 80, 126636 (2024).
doi: 10.1016/j.jnc.2024.126636
Otieno, N. E. & Mutati, A. Bird alpha, beta and functional diversities across three peri-urban woodland stands along an anthropogenic disturbance gradient: Is formal protection a guarantee for ecological integrity?. Global Ecol. Conserv. 25, e01410 (2021).
doi: 10.1016/j.gecco.2020.e01410
Suhonen, J., Jokimäki, J., Lassila, R., Kaisanlahti-Jokimäki, M.-L. & Carbó-Ramírez, P. Effects of roads on fruit crop and removal rate from rowanberry trees (Sorbus aucuparia) by birds in urban areas of Finland. Urban For. Urban Green. 27, 148–154 (2017).
doi: 10.1016/j.ufug.2017.08.001
Breitbach, N., Laube, I., Steffan-Dewenter, I. & Böhning-Gaese, K. Bird diversity and seed dispersal along a human land-use gradient: High seed removal in structurally simple farmland. Oecologia 162, 965–976 (2010).
pubmed: 20049479
doi: 10.1007/s00442-009-1547-y
Kirika, J. M., Farwig, N. & Böhning-Gaese, K. Effects of local disturbance of tropical forests on frugivores and seed removal of a small-seeded afrotropical tree. Conserv. Biol. 22, 318–328 (2008).
pubmed: 18241235
doi: 10.1111/j.1523-1739.2007.00874.x
Zhou, J. et al. Environmental determinants of aquatic plant diversity differ between growth forms and range sizes. Ecol. Indic. 157, 111280 (2023).
doi: 10.1016/j.ecolind.2023.111280
Ji, M. et al. Diversity and environmental determinants of aquatic plants across China. Hydrobiologia 851(14), 3453–3469 (2024).
doi: 10.1007/s10750-024-05509-2
Campetella, G. et al. Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation gradient: Measurements matter. Plant Ecol. 220, 765–776 (2019).
doi: 10.1007/s11258-019-00951-y
Xie, S. et al. The role of urban waterbodies in maintaining bird species diversity within built area of Beijing. Sci. Total Environ. 806, 150430 (2022).
pubmed: 34852427
doi: 10.1016/j.scitotenv.2021.150430
Martin, P. H., Canham, C. D. & Marks, P. L. Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance. Front. Ecol. Environ. 7, 142–149 (2009).
doi: 10.1890/070096
Tognetti, P. M., Chaneton, E. J., Omacini, M., Trebino, H. J. & León, R. J. C. Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biol. Conserv. 143, 2494–2503 (2010).
doi: 10.1016/j.biocon.2010.06.016
Canessa, R., Saldaña, A., Ríos, R. S. & Gianoli, E. Functional trait variation predicts distribution of alien plant species across the light gradient in a temperate rainforest. Persp. Plant Ecol. Evol. Syst. 32, 49–55 (2018).
doi: 10.1016/j.ppees.2018.04.002
Barr, A. E., Van Dijk, L. J. A., Hylander, K. & Tack, A. J. M. Local habitat factors and spatial connectivity jointly shape an urban insect community. Landsc. Urban Plan. 214, 104177 (2021).
doi: 10.1016/j.landurbplan.2021.104177
Teixeira, C. P., Fernandes, C. O., Ryan, R. & Ahern, J. Attitudes and preferences towards plants in urban green spaces: Implications for the design and management of Novel Urban Ecosystems. J. Environ. Manag. 314, 115103 (2022).
doi: 10.1016/j.jenvman.2022.115103
Wang, M., Zhang, H., Fan, S., Hao, P. & Dong, L. A zoning-based solution for hierarchical forest patch mosaic in urban parks. Urban For. Urban Green. 65, 127352 (2021).
doi: 10.1016/j.ufug.2021.127352