Activating transcription factor 3 mediates apoptosis and cell cycle arrest in TP53-mutated anaplastic thyroid cancer cells.
8305C
ATF3
Mutant p53
SHARP1
TAp63
Thyroid cancer
ΔNp63
Journal
Thyroid research
ISSN: 1756-6614
Titre abrégé: Thyroid Res
Pays: England
ID NLM: 101469037
Informations de publication
Date de publication:
01 Aug 2024
01 Aug 2024
Historique:
received:
23
12
2023
accepted:
19
05
2024
medline:
1
8
2024
pubmed:
1
8
2024
entrez:
31
7
2024
Statut:
epublish
Résumé
It is believed that loss of p53 function plays a crucial role in the progression of well to poorly differentiated thyroid cancers including anaplastic thyroid carcinoma (ATC). Given the poor prognosis of ATC due to its strong therapeutic resistance, there is a need to establish new therapeutic targets to extend the survival of ATC patients. Activating transcription factor 3 (ATF3) can inhibit the oncogenic activity of mutant p53 and, as a result, contribute to tumor suppression in several TP53-mutated cancers. Herein, we demonstrate that the ectopic overexpression of ATF3 leads to the suppression of oncogenic mutant p53 activity in chemo-resistant 8305 C thyroid cancer cells harboring R273C p53 gene mutation. The biological behavior of 8305 C cells was assessed pre- and post-transfection with pCMV6-ATF3 plasmid using MTT assay, fluorescent microscopy, cell cycle, and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 overexpression on the cellular level of p53 was examined by western blotting assay. The mRNA expression levels of TP53, TAp63, ΔNp63, and SHARP1 were evaluated in ectopic ATF3-expressing cells compared to controls. The overexpression of ATF3 in 8305 C thyroid cancer cells significantly decreased cell viability and induced apoptosis and cell cycle arrest in vitro. The immunoblotting of p53 protein revealed that ATF3 overexpression significantly increased the level of mutant p53 in 8305C cells compared to mock-transfected control cells. Additionally, elevated mRNA levels of TAp63 and SHARP1 and a decreased mRNA level of ΔNp63 were observed in PCMV6-AC-ATF3-transfected 8305 C cells with significant differences compared to the mock and untreated cells. In light of our findings, it is evident that therapeutic strategies aimed at increasing ATF3 expression or enhancing the interaction between ATF3 and mutant p53 can be a promising approach for the treatment of p53-mutated metastatic thyroid cancer.
Sections du résumé
BACKGROUND
BACKGROUND
It is believed that loss of p53 function plays a crucial role in the progression of well to poorly differentiated thyroid cancers including anaplastic thyroid carcinoma (ATC). Given the poor prognosis of ATC due to its strong therapeutic resistance, there is a need to establish new therapeutic targets to extend the survival of ATC patients. Activating transcription factor 3 (ATF3) can inhibit the oncogenic activity of mutant p53 and, as a result, contribute to tumor suppression in several TP53-mutated cancers. Herein, we demonstrate that the ectopic overexpression of ATF3 leads to the suppression of oncogenic mutant p53 activity in chemo-resistant 8305 C thyroid cancer cells harboring R273C p53 gene mutation.
METHODS
METHODS
The biological behavior of 8305 C cells was assessed pre- and post-transfection with pCMV6-ATF3 plasmid using MTT assay, fluorescent microscopy, cell cycle, and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 overexpression on the cellular level of p53 was examined by western blotting assay. The mRNA expression levels of TP53, TAp63, ΔNp63, and SHARP1 were evaluated in ectopic ATF3-expressing cells compared to controls.
RESULTS
RESULTS
The overexpression of ATF3 in 8305 C thyroid cancer cells significantly decreased cell viability and induced apoptosis and cell cycle arrest in vitro. The immunoblotting of p53 protein revealed that ATF3 overexpression significantly increased the level of mutant p53 in 8305C cells compared to mock-transfected control cells. Additionally, elevated mRNA levels of TAp63 and SHARP1 and a decreased mRNA level of ΔNp63 were observed in PCMV6-AC-ATF3-transfected 8305 C cells with significant differences compared to the mock and untreated cells.
CONCLUSION
CONCLUSIONS
In light of our findings, it is evident that therapeutic strategies aimed at increasing ATF3 expression or enhancing the interaction between ATF3 and mutant p53 can be a promising approach for the treatment of p53-mutated metastatic thyroid cancer.
Identifiants
pubmed: 39085957
doi: 10.1186/s13044-024-00202-x
pii: 10.1186/s13044-024-00202-x
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12Informations de copyright
© 2024. The Author(s).
Références
Giuffrida D, Gharib H. Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 2000;11(9):1083–90.
pubmed: 11061600
doi: 10.1023/A:1008322002520
Chintakuntlawar AV, Foote RL, Kasperbauer JL, Bible KC. Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin. 2019;48(1):269–84.
doi: 10.1016/j.ecl.2018.10.010
Jayarangaiah A, Sidhu G, Brown J, Barrett-Campbell O, Bahtiyar G, Youssef I, et al. Therapeutic options for advanced thyroid cancer. Int J Endocrinol Metab. 2019;5(1):26.
doi: 10.17352/ijcem.000040
Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018;25(3):R153–61.
pubmed: 29295821
doi: 10.1530/ERC-17-0435
Maniakas A, Dadu R, Busaidy NL, Wang JR, Ferrarotto R, Lu C, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–404.
pubmed: 32761153
doi: 10.1001/jamaoncol.2020.3362
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):1–15.
doi: 10.1186/s12935-021-02396-8
Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. PNAS. 2012;109(24):9551–6.
pubmed: 22628563
pmcid: 3386058
doi: 10.1073/pnas.1200019109
Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang S-H, Koeffler H. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Investig. 1993;91(1):179–84.
pubmed: 8423216
pmcid: 330012
doi: 10.1172/JCI116168
Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9(10):701–13.
pubmed: 19693097
doi: 10.1038/nrc2693
Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S, et al. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J Biol Chem. 2014;289(13):8947–59.
pubmed: 24554706
pmcid: 3979409
doi: 10.1074/jbc.M113.503755
Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192(2):209–18.
pubmed: 21263025
pmcid: 3172183
doi: 10.1083/jcb.201009059
Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee C-CR, et al. ∆Np63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003;63(10):2351–7.
pubmed: 12750249
Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, et al. TAp63 and ∆Np63 in cancer and epidermal development. Cell Cycle. 2007;6(3):274–84.
pubmed: 17264681
doi: 10.4161/cc.6.3.3797
Sun H, Ghaffari S, Taneja R. bHLH-Orange transcription factors in development and cancer. Transl Oncogenomics. 2007;2:107.
pubmed: 23641148
pmcid: 3634620
doi: 10.4137/TOG.S436
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell. 2009;137(1):87–98.
pubmed: 19345189
doi: 10.1016/j.cell.2009.01.039
Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21(5):1874–87.
pubmed: 11238924
pmcid: 86759
doi: 10.1128/MCB.21.5.1874-1887.2001
Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 suppresses metastasis of bladder Cancer by regulating gelsolin-mediated remodeling of the actin CytoskeletonATF3 suppresses the metastasis of bladder Cancer. Cancer Res. 2013;73(12):3625–37.
pubmed: 23536558
doi: 10.1158/0008-5472.CAN-12-3879
Jan Y-H, Tsai H-Y, Yang C-J, Huang M-S, Yang Y-F, Lai T-C, et al. Adenylate Kinase-4 is a marker of poor clinical outcomes that promotes metastasis of Lung Cancer by downregulating the transcription factor ATF3AK4 downregulates ATF3 to promote Lung Cancer Cell Metastasis. Cancer Res. 2012;72(19):5119–29.
pubmed: 23002211
doi: 10.1158/0008-5472.CAN-12-1842
Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C, et al. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer. 2010;10:1–9.
doi: 10.1186/1471-2407-10-668
Wang H, Mo P, Ren S, Yan C. Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J Biol Chem. 2010;285(17):13201–10.
pubmed: 20167600
pmcid: 2857083
doi: 10.1074/jbc.M109.058669
Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, et al. In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural-and malignant glioma-stem cell homeostasis. Cancer Cell. 2013;23(5):660–76.
pubmed: 23680149
doi: 10.1016/j.ccr.2013.03.030
Akbarpour Arsanjani A, Abuei H, Behzad-Behbahani A, Bagheri Z, Arabsolghar R, Farhadi A. Activating transcription factor 3 inhibits NF–κB p65 signaling pathway and mediates apoptosis and cell cycle arrest in cervical cancer cells. Infect Agents Cancer. 2022;17(1):1–10.
doi: 10.1186/s13027-022-00475-7
Kooti A, Abuei H, Farhadi A, Behzad-Behbahani A, Zarrabi M. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells. Virus Genes. 2022;58(2):88–97.
pubmed: 35129760
doi: 10.1007/s11262-022-01887-8
Yin X, Dewille J, Hai T. A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene. 2008;27(15):2118–27.
pubmed: 17952119
doi: 10.1038/sj.onc.1210861
Wu X, Nguyen B-C, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465(7296):368–72.
pubmed: 20485437
pmcid: 3050632
doi: 10.1038/nature08996
Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, et al. Methylation-mediated silencing of ATF3 promotes thyroid cancer progression by regulating prognostic genes in the MAPK and PI3K/AKT pathways. Thyroid. 2023;33(12):1441–54.
pubmed: 37742107
doi: 10.1089/thy.2023.0157
Laemmli UK. Cleavage of structural proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227(5259):680–5.
pubmed: 5432063
doi: 10.1038/227680a0
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45–e.
pubmed: 11328886
pmcid: 55695
doi: 10.1093/nar/29.9.e45
Guenzle J, Wolf LJ, Garrelfs NW, Goeldner JM, Osterberg N, Schindler CR, et al. ATF3 reduces migration capacity by regulation of matrix metalloproteinases via NFκB and STAT3 inhibition in glioblastoma. Cell Death Discov. 2017;3(1):1–12.
doi: 10.1038/cddiscovery.2017.6
Campisi A, Bonfanti R, Raciti G, Bonaventura G, Legnani L, Magro G, et al. Gene silencing of transferrin-1 receptor as a potential therapeutic target for human follicular and anaplastic thyroid cancer. Mol Ther Oncolytics. 2020;16:197–206.
pubmed: 32099899
pmcid: 7033459
doi: 10.1016/j.omto.2020.01.003
Yan C, Boyd DD. ATF3 regulates the stability of p53: a link to cancer. Cell Cycle. 2006;5(9):926–9.
pubmed: 16628010
doi: 10.4161/cc.5.9.2714
Kester HA, Sonneveld E, van der Saag PT, van der Burg B. Prolonged progestin treatment induces the promoter of CDK inhibitor p21Cip1, Waf1 through activation of p53 in human breast and endometrial tumor cells. Exp Cell Res. 2003;284(2):262–71.
doi: 10.1016/S0014-4827(02)00017-4
Yan C, Lu D, Hai T, Boyd DD. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2005;24(13):2425–35.
pubmed: 15933712
pmcid: 1173153
doi: 10.1038/sj.emboj.7600712
Wang CM, Brennan VC, Gutierrez NM, Wang X, Wang L, Yang WH. SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene. J Cell Biochem. 2013;114(3):589–98.
pubmed: 22991139
doi: 10.1002/jcb.24396
Wang C-M, Yang W-H. Loss of SUMOylation on ATF3 inhibits proliferation of prostate cancer cells by modulating CCND1/2 activity. Int J Mol Sci. 2013;14(4):8367–80.
pubmed: 23591848
pmcid: 3645748
doi: 10.3390/ijms14048367
Wang C-M, Yang WH, Cardoso L, Gutierrez N, Yang RH, Yang W-H. Forkhead box protein P3 (FOXP3) represses ATF3 transcriptional activity. Int J Mol Sci. 2021;22(21):11400.
pubmed: 34768829
pmcid: 8583784
doi: 10.3390/ijms222111400
Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S. Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun. 2002;297(5):1302–10.
pubmed: 12372430
doi: 10.1016/S0006-291X(02)02382-3
Kim J, Shin J, Moon J, Hong S, Jung D, Kim J, et al. Foxp3 is a key downstream regulator of p53-mediated cellular senescence. Oncogene. 2017;36(2):219–30.
pubmed: 27238838
doi: 10.1038/onc.2016.193
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416(6880):560–4.
pubmed: 11932750
doi: 10.1038/416560a
Armstrong SR, Wu H, Wang B, Abuetabh Y, Sergi C, Leng RP. The regulation of tumor suppressor p63 by the ubiquitin-proteasome system. Int J Mol Sci. 2016;17(12):2041.
pubmed: 27929429
pmcid: 5187841
doi: 10.3390/ijms17122041
Wu HH, Wang B, Armstrong SR, Abuetabh Y, Leng S, Roa WH, et al. Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and ∆Np63 ubiquitination and degradation. Nucleic Acids Res. 2021;49(5):2740–58.
pubmed: 33619536
pmcid: 7969027
doi: 10.1093/nar/gkab081
Malaguarnera R, Mandarino A, Mazzon E, Vella V, Gangemi P, Vancheri C, et al. The p53-homologue p63 may promote thyroid cancer progression. Endocr Relat Cancer. 2005;12(4):953–71.
pubmed: 16322335
doi: 10.1677/erc.1.00968
Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20(1):79–91.
pubmed: 21741598
doi: 10.1016/j.ccr.2011.06.004
Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, et al. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature. 2012;487(7407):380–4.
pubmed: 22801492
doi: 10.1038/nature11207
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, et al. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer. 2018;18(1):1–15.
doi: 10.1186/s12885-018-4217-9
Zhao J, Li X, Guo M, Yu J, Yan C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genom. 2016;17:1–14.
doi: 10.1186/s12864-016-2664-8
Zhou ZH, Wang B, Cheng XB, Zhang XE, Tang J, Tang WJ, et al. Roles of SHARP1 in thyroid cancer. Mol Med Rep. 2016;13(6):5365–71.
pubmed: 27121679
doi: 10.3892/mmr.2016.5185