Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 Aug 2024
Historique:
received: 14 02 2024
accepted: 16 07 2024
medline: 2 8 2024
pubmed: 2 8 2024
entrez: 1 8 2024
Statut: epublish

Résumé

Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.

Identifiants

pubmed: 39090103
doi: 10.1038/s41467-024-50792-1
pii: 10.1038/s41467-024-50792-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6499

Subventions

Organisme : King Abdullah University of Science and Technology (KAUST)
ID : ORA-2021-CRG10-4650
Organisme : King Abdullah University of Science and Technology (KAUST)
ID : REI/1/5130-01-01

Informations de copyright

© 2024. The Author(s).

Références

Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).
Bandodkar, A. J. et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138, 123–128 (2013).
pubmed: 23113321
Anastasova, S. et al. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 93, 139–145 (2017).
pubmed: 27743863
Novell, M., Parrilla, M., Crespo, G. A., Rius, F. X. & Andrade, F. J. Paper-based ion-selective potentiometric sensors. Anal. Chem. 84, 4695–4702 (2012).
pubmed: 22524243
Bobacka, J., Ivaska, A. & Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 108, 329–351 (2008).
pubmed: 18189426
Bakker, E., Pretsch, E. & Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 72, 1127–1133 (2000).
pubmed: 10740849
Bakker, E., Bühlmann, P. & Pretsch, E. Polymer membrane ion-selective electrodes-what are the limits? Electroanalysis 11, 915–933 (1999).
Ding, J. & Qin, W. Recent advances in potentiometric biosensors. TrAC Trends Anal. Chem. 124, 115803 (2020).
Yang, Y., Yang, X., Yang, Y. & Yuan, Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon N Y 129, 380–395 (2018).
Hosu, O., Selvolini, G., Cristea, C. & Marrazza, G. Electrochemical immunosensors for disease detection and diagnosis. Curr. Med. Chem. 25, 4119–4137 (2018).
pubmed: 28748767
Ozdemir, M. S. et al. A label-free potentiometric sensor principle for the detection of antibody–antigen interactions. Anal. Chem. 85, 4770–4776 (2013).
pubmed: 23534536
Sharafeldin, M., James, T. & Davis, J. J. Open circuit potential as a tool for the assessment of binding kinetics and reagentless protein quantitation. Anal. Chem. 93, 14748–14754 (2021).
pubmed: 34699180
Figueiredo, A. et al. Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Sci. Rep. 5, 7865 (2015).
pubmed: 25597820 pmcid: 4297984
Zdrachek, E. & Bakker, E. Potentiometric sensing. Anal. Chem. 93, 72–102 (2021).
pubmed: 33108168
Hu, J., Stein, A. & Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 76, 102–114 (2016).
Rousseau, C. R. & Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem. 140, 116277 (2021).
Sophocleous, M. & Atkinson, J. K. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sens. Actuators A Phys. 267, 106–120 (2017).
Wu, M. et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity. Adv. Sci. 10, e2300504 (2023).
Xie, K. et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. Elife 9, e50345 (2020).
pubmed: 32043970 pmcid: 7075691
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
Strakosas, X., Bongo, M. & Owens, R. M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015).
Leleux, P. et al. Organic electrochemical transistors for clinical applications. Adv. Health. Mater. 4, 142–147 (2015).
Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).
pubmed: 31427743
Gualandi, I. et al. Organic electrochemical transistors as versatile analytical potentiometric sensors. Front. Bioeng. Biotechnol. 7, 354 (2019).
pubmed: 31824941 pmcid: 6882742
Liu, H. et al. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. Sci. Adv. 7, eabg8387 (2021).
pubmed: 34524851 pmcid: 8443172
Gualandi, I. et al. Nanoparticle gated semiconducting polymer for a new generation of electrochemical sensors. Sens. Actuators B Chem. 273, 834–841 (2018).
Salvigni, L. et al. Selective detection of liposoluble vitamins using an organic electrochemical transistor. Sens. Actuators B Chem. 393, 134313 (2023).
Arcangeli, D. et al. Smart bandaid integrated with fully textile OECT for uric acid real-time monitoring in wound exudate. ACS Sens. 8, 1593–1608 (2023).
pubmed: 36929744 pmcid: 10152490
Koklu, A. et al. Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sens. Actuators B Chem. 329, 129251 (2021).
Guo, K. et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 5, 666–677 (2021).
pubmed: 34031558
Macchia, E. et al. Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates. Flex. Print. Electron. 3, 034002 (2018).
Chen, S. et al. Recent technological advances in fabrication and application of organic electrochemical transistors. Adv. Mater. Technol. 5, 2000523 (2020).
Berggren, M., Nilsson, D. & Robinson, N. D. Organic materials for printed electronics. Nat. Mater. 6, 3–5 (2007).
pubmed: 17199114
Demuru, S. et al. All-inkjet-printed graphene-gated organic electrochemical transistors on polymeric foil as highly sensitive enzymatic biosensors. ACS Appl. Nano Mater. 5, 1664–1673 (2022).
Zabihipour, M. et al. High yield manufacturing of fully screen-printed organic electrochemical transistors. npj Flex. Electron. 4, 15 (2020).
Kim, S.-M. et al. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 9, 3858 (2018).
pubmed: 30242224 pmcid: 6155079
Bidinger, S. L., Han, S., Malliaras, G. G. & Hasan, T. Highly stable PEDOT:PSS electrochemical transistors. Appl. Phys. Lett. 120, 073302 (2022).
Tan, S. T. M. et al. High‐gain chemically gated organic electrochemical transistor. Adv. Funct. Mater. 31, 2010868 (2021).
White, S. P., Dorfman, K. D. & Frisbie, C. D. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 87, 1861–1866 (2015).
pubmed: 25569583
Zhang, S. et al. Toward stable p‐type thiophene‐based organic electrochemical transistors. Adv. Funct. Mater. 33, 2302249 (2023).
Mariani, F. et al. Design of an electrochemically gated organic semiconductor for pH sensing. Electrochem. Commun. 116, 106763 (2020).
Mariani, F. et al. Advanced wound dressing for real-time pH monitoring. ACS Sens. 6, 2366–2377 (2021).
pubmed: 34076430 pmcid: 8294608
Di Franco, C. et al. Extended work function shift of large‐area biofunctionalized surfaces triggered by a few single‐molecule affinity binding events. Adv. Mater. Interfaces 10, 2201829 (2023).
Macchia, E. et al. Single-molecule detection with a millimetre-sized transistor. Nat. Commun. 9, 3223 (2018).
pubmed: 30104563 pmcid: 6089965
Bonafè, F., Decataldo, F., Fraboni, B. & Cramer, T. Charge carrier mobility in organic mixed ionic–electronic conductors by the electrolyte-gated van der Pauw method. Adv. Electron. Mater. 7, 2100086 (2021).
Ji, X., Lin, X. & Rivnay, J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 14, 1665 (2023).
pubmed: 36966131 pmcid: 10039935
Memming, R. Semiconductor Electrochemistry (Wiley, 2015).
Park, J. H. et al. Open circuit (mixed) potential changes upon contact between different inert electrodes–size and kinetic effects. Anal. Chem. 85, 964–970 (2013).
pubmed: 23240811
Macchia, E. et al. Large-area interfaces for single-molecule label-free bioelectronic detection. Chem. Rev. 122, 4636–4699 (2022).
pubmed: 35077645
Liang, Y., Wu, C., Figueroa-Miranda, G., Offenhäusser, A. & Mayer, D. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosens. Bioelectron. 144, 111668 (2019).
pubmed: 31522101
Lin, P., Luo, X., Hsing, I. & Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label‐free DNA sensing. Adv. Mater. 23, 4035–4040 (2011).
pubmed: 21793055
Tao, W. et al. A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Adv. 7, 52118–52124 (2017).
Colburn, A. W., Levey, K. J., O’Hare, D. & Macpherson, J. V. Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. Phys. Chem. Chem. Phys. 23, 8100–8117 (2021).
pubmed: 33875985
Percival, S. J. & Bard, A. J. Ultra-sensitive potentiometric measurements of dilute redox molecule solutions and determination of sensitivity factors at platinum ultramicroelectrodes. Anal. Chem. 89, 9843–9849 (2017).
pubmed: 28825303
Bernards, D. A. et al. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008).
Sun, H. et al. Complementary logic circuits based on high‐performance n‐type organic electrochemical transistors. Adv. Mater. 30, 1704916 (2018).
Romele, P. et al. Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat. Commun. 11, 3743 (2020).
pubmed: 32719350 pmcid: 7385487
Wang, Y. et al. Acceptor functionalization via green chemistry enables high‐performance n‐type organic electrochemical transistors for biosensing, memory applications. Adv. Funct. Mater. 34, 2304103 (2024).
Druet, V. et al. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun. 14, 5481 (2023).
pubmed: 37673950 pmcid: 10482932
Tria, S. A. et al. Dynamic monitoring of Salmonella typhimurium infection of polarized epithelia using organic transistors. Adv. Health. Mater. 3, 1053–1060 (2014).
Ferro, M. P. et al. Effect of E cigarette emissions on tracheal cells monitored at the air–liquid interface using an organic electrochemical transistor. Adv. Biosyst. 3, 1800249 (2019).
Ramuz, M. et al. Combined optical and electronic sensing of epithelial cells using planar organic transistors. Adv. Mater. 26, 7083–7090 (2014).
pubmed: 25179835 pmcid: 4489338
Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).
pubmed: 32262653
Ramuz, M. et al. Optimization of a planar all‐polymer transistor for characterization of barrier tissue. ChemPhysChem 16, 1210–1216 (2015).
pubmed: 25752503
Anderson, E. L., Lodge, T. P., Gopinath, T., Veglia, G. & Bühlmann, P. More than a liquid junction: effect of stirring, flow rate, and inward and outward electrolyte diffusion on reference electrodes with salt bridges contained in nanoporous glass. Anal. Chem. 91, 7698–7704 (2019).
pubmed: 31120239
Anderson, E. L., Troudt, B. K. & Bühlmann, P. Critical comparison of reference electrodes with salt bridges contained in nanoporous glass with 5, 20, 50, and 100 nm diameter pores. Anal. Sci. 36, 187–191 (2020).
pubmed: 31495816
Kawan, M. et al. Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Mater. Horiz. 7, 2348–2358 (2020).
Ohayon, D. et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19, 456–463 (2020).
pubmed: 31844278
Pappa, A. M. et al. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 4, eaat0911 (2018).
pubmed: 29942860 pmcid: 6014717
Wustoni, S. et al. In situ electrochemical synthesis of a conducting polymer composite for multimetabolite sensing. Adv. Mater. Technol. 5, 1900943 (2020).
Koklu, A. et al. Convection driven ultrarapid protein detection via nanobody‐functionalized organic electrochemical transistors. Adv. Mater. 34, 2202972 (2022).
Lindfors, T. & Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 531, 43–52 (2002).
Savva, A. et al. Influence of water on the performance of organic electrochemical transistors. Chem. Mater. 31, 927–937 (2019).

Auteurs

Luca Salvigni (L)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Prem Depan Nayak (PD)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Anil Koklu (A)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Danilo Arcangeli (D)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Johana Uribe (J)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Adel Hama (A)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Raphaela Silva (R)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Tania Cecilia Hidalgo Castillo (TC)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.

Sophie Griggs (S)

University of Oxford, Department of Chemistry, Oxford, UK.

Adam Marks (A)

University of Oxford, Department of Chemistry, Oxford, UK.

Iain McCulloch (I)

University of Oxford, Department of Chemistry, Oxford, UK.

Sahika Inal (S)

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia. sahika.inal@kaust.edu.sa.

Classifications MeSH