Genome-wide association study and meta-analysis of phytosterols identifies a novel locus for serum levels of campesterol.


Journal

Human genomics
ISSN: 1479-7364
Titre abrégé: Hum Genomics
Pays: England
ID NLM: 101202210

Informations de publication

Date de publication:
01 Aug 2024
Historique:
received: 15 03 2024
accepted: 22 07 2024
medline: 2 8 2024
pubmed: 2 8 2024
entrez: 1 8 2024
Statut: epublish

Résumé

Sitosterolemia is a rare inherited disorder caused by mutations in the ABCG5/ABCG8 genes. These genes encode proteins involved in the transport of plant sterols. Mutations in these genes lead to decreased excretion of phytosterols, which can accumulate in the body and lead to a variety of health problems, including premature coronary artery disease. We conducted the first genome-wide association study (GWAS) in the Middle East/North Africa population to identify genetic determinants of plant sterol levels in Qatari people. GWAS was performed on serum levels of β-sitosterol and campesterol using the Metabolon platform from Qatar Biobank (QBB) and genome sequence data provided by Qatar Genome Program. A trans-ancestry meta-analysis of data from our Qatari cohort with summary statistics from a previously published large cohort (9758 subjects) of European ancestry was conducted. Using conditional analysis, we identified two independent single nucleotide polymorphisms associated with β-sitosterol (rs145164937 and rs4299376), and two others with campesterol (rs7598542 and rs75901165) in the Qatari population in addition to previously reported variants. All of them map to the ABCG5/8 locus except rs75901165 which is located within the Intraflagellar Transport 43 (IFT43) gene. The meta-analysis replicated most of the reported variants, and our study provided significant support for the association of variants in SCARB1 and ABO with sitosterolemia. Evaluation of a polygenic risk score devised from European GWAS data showed moderate performance when applied to QBB (adjusted-R

Identifiants

pubmed: 39090729
doi: 10.1186/s40246-024-00649-x
pii: 10.1186/s40246-024-00649-x
doi:

Substances chimiques

Phytosterols 0
campesterol 5L5O665639
Sitosterols 0
gamma-sitosterol 5LI01C78DD
ATP Binding Cassette Transporter, Subfamily G, Member 5 0
ATP Binding Cassette Transporter, Subfamily G, Member 8 0
ABCG5 protein, human 0
ABCG8 protein, human 0
Cholesterol 97C5T2UQ7J
Lipoproteins 0
ATP-Binding Cassette Transporters 0

Types de publication

Journal Article Meta-Analysis

Langues

eng

Sous-ensembles de citation

IM

Pagination

85

Informations de copyright

© 2024. The Author(s).

Références

Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.
doi: 10.1126/science.290.5497.1771 pubmed: 11099417
Myrie SB, Steiner RD, Mymin D. Sitosterolemia. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews((R)). Seattle (1993).
Kwon HJ, Palnitkar M, Deisenhofer J. The structure of the NPC1L1 N-terminal domain in a closed conformation. PLoS ONE. 2011;6(4): e18722.
doi: 10.1371/journal.pone.0018722 pubmed: 21525977 pmcid: 3078110
Othman RA, Myrie SB, Jones PJ. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. Atherosclerosis. 2013;231(2):291–9.
doi: 10.1016/j.atherosclerosis.2013.09.038 pubmed: 24267242
Hindi NN, Alenbawi J, Nemer G. Pharmacogenomics variability of lipid-lowering therapies in familial hypercholesterolemia. J Pers Med. 2021;11(9):877.
doi: 10.3390/jpm11090877 pubmed: 34575654 pmcid: 8468752
Izar MC, Tegani DM, Kasmas SH, Fonseca FA. Phytosterols and phytosterolemia: gene-diet interactions. Genes Nutr. 2011;6(1):17–26.
doi: 10.1007/s12263-010-0182-x pubmed: 21437027
Rees DC, Iolascon A, Carella M, O’Marcaigh AS, Kendra JR, Jowitt SN, et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol. 2005;130(2):297–309.
doi: 10.1111/j.1365-2141.2005.05599.x pubmed: 16029460
Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb. 2018;25(9):783–9.
doi: 10.5551/jat.RV17024 pubmed: 30033951 pmcid: 6143779
Ajagbe BO, Othman RA, Myrie SB. Plant sterols, stanols, and sitosterolemia. J AOAC Int. 2015;98(3):716–23.
doi: 10.5740/jaoacint.SGEAjagbe pubmed: 25941971
Yoo EG. Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab. 2016;21(1):7–14.
doi: 10.6065/apem.2016.21.1.7 pubmed: 27104173 pmcid: 4835564
Farzam K, Morgan RT. Hereditary sitosterolemia. Treasure Island: StatPearls; 2022.
Escola-Gil JC, Quesada H, Julve J, Martin-Campos JM, Cedo L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep. 2014;16(7):424.
doi: 10.1007/s11883-014-0424-2 pubmed: 24821603
Wang J, Joy T, Mymin D, Frohlich J, Hegele RA. Phenotypic heterogeneity of sitosterolemia. J Lipid Res. 2004;45(12):2361–7.
doi: 10.1194/jlr.M400310-JLR200 pubmed: 15375183
Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM, Hobbs HH, et al. Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res. 2002;43(3):486–94.
doi: 10.1016/S0022-2275(20)30155-3 pubmed: 11893785
Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57.
doi: 10.1093/eurheartj/ehu274 pubmed: 25053660 pmcid: 4139706
Lutjohann D. Sitosterolemia (phytosterolemia). Internist (Berl). 2019;60(8):871–7.
pubmed: 31254003
Altmann SW, Davis HR Jr, Yao X, Laverty M, Compton DS, Zhu LJ, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580(1):77–93.
doi: 10.1016/S1388-1981(01)00190-1 pubmed: 11923102
Helgadottir A, Thorleifsson G, Alexandersson KF, Tragante V, Thorsteinsdottir M, Eiriksson FF, et al. Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease. Eur Heart J. 2020;41(28):2618–28.
doi: 10.1093/eurheartj/ehaa531 pubmed: 32702746 pmcid: 7377579
Nomura A, Emdin CA, Won HH, Peloso GM, Natarajan P, Ardissino D, et al. Heterozygous ABCG5 gene deficiency and risk of coronary artery disease. Circ Genom Precis Med. 2020;13(5):417–23.
doi: 10.1161/CIRCGEN.119.002871 pubmed: 32862661 pmcid: 7983048
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.
doi: 10.1038/nature19057 pubmed: 27535533 pmcid: 5018207
Tao C, Shkumatov AA, Alexander ST, Ason BL, Zhou M. Stigmasterol accumulation causes cardiac injury and promotes mortality. Commun Biol. 2019;2:20.
doi: 10.1038/s42003-018-0245-x pubmed: 30675518 pmcid: 6335236
Teupser D, Baber R, Ceglarek U, Scholz M, Illig T, Gieger C, et al. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ Cardiovasc Genet. 2010;3(4):331–9.
doi: 10.1161/CIRCGENETICS.109.907873 pubmed: 20529992
Scholz M, Horn K, Pott J, Gross A, Kleber ME, Delgado GE, et al. Author Correction: genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat Commun. 2022;13(1):1122.
doi: 10.1038/s41467-022-28863-y pubmed: 35217655 pmcid: 8881461
Badawi A, Arora P, Sadoun E, Al-Thani AA, Thani MH. Prevalence of vitamin d insufficiency in Qatar: a systematic review. J Public Health Res. 2012;1(3):229–35.
doi: 10.4081/jphr.2012.e36 pubmed: 25170469 pmcid: 4140375
Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656–67.
doi: 10.1021/ac901536h pubmed: 19624122
Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.
doi: 10.1038/nature10354 pubmed: 21886157
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
doi: 10.1186/s13742-015-0047-8 pubmed: 25722852 pmcid: 4342193
Kanai M, Tanaka T, Okada Y. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set. J Hum Genet. 2016;61(10):861–6.
doi: 10.1038/jhg.2016.72 pubmed: 27305981 pmcid: 5090169
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23(10):1294–6.
doi: 10.1093/bioinformatics/btm108 pubmed: 17384015
MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 2017;45(D1):D896–901.
doi: 10.1093/nar/gkw1133 pubmed: 27899670
Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336–7.
doi: 10.1093/bioinformatics/btq419 pubmed: 20634204 pmcid: 2935401
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
doi: 10.1016/j.ajhg.2010.11.011 pubmed: 21167468 pmcid: 3014363
Hunt SE, Moore B, Amode RM, Armean IM, Lemos D, Mushtaq A, et al. Annotating and prioritizing genomic variants using the ensembl variant effect predictor-A tutorial. Hum Mutat. 2022;43(8):986–97.
doi: 10.1002/humu.24298 pubmed: 34816521
Belkadi A, Thareja G, Abbaszadeh F, Badii R, Fauman E, Albagha OME, et al. Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. Cell Genom. 2023;3(1):100218.
doi: 10.1016/j.xgen.2022.100218 pubmed: 36777185
Aboobucker SI, Suza WP. Why do plants convert sitosterol to stigmasterol? Front Plant Sci. 2019;10:354.
doi: 10.3389/fpls.2019.00354 pubmed: 30984220 pmcid: 6447690
Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS ONE. 2014;9(9):e108470.
doi: 10.1371/journal.pone.0108470 pubmed: 25243405 pmcid: 4171540
Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160C(3):165–74.
doi: 10.1002/ajmg.c.31336 pubmed: 22791528
Nunes VS, Ilha AOG, Ferreira GDS, Bombo RPA, Afonso MS, Lavrador MSF, et al. Plasma lathosterol measures rates of cholesterol synthesis and efficiency of dietary phytosterols in reducing the plasma cholesterol concentration. Clinics (Sao Paulo). 2022;77:100028.
doi: 10.1016/j.clinsp.2022.100028 pubmed: 35397367

Auteurs

Jamil Alenbawi (J)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.

Yasser A Al-Sarraj (YA)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), P.O. Box 5825, Doha, Qatar.

Umm-Kulthum I Umlai (UI)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.

Ayat Kadhi (A)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
College of Health and Sciences, University of Doha for Science and Technology, P.O. Box 24449, Doha, Qatar.

Nagham N Hendi (NN)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.

Georges Nemer (G)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar. gnemer@hbku.edu.qa.

Omar M E Albagha (OME)

Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar. oalbagha@hbku.edu.qa.
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK. oalbagha@hbku.edu.qa.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH