Morphological and morphometric analysis of tarsal bones according to sex.
Area
Computed tomography
Morphology
Tarsal bones
Tarsal joint
Volume
Journal
Surgical and radiologic anatomy : SRA
ISSN: 1279-8517
Titre abrégé: Surg Radiol Anat
Pays: Germany
ID NLM: 8608029
Informations de publication
Date de publication:
02 Aug 2024
02 Aug 2024
Historique:
received:
18
05
2024
accepted:
24
07
2024
medline:
2
8
2024
pubmed:
2
8
2024
entrez:
2
8
2024
Statut:
aheadofprint
Résumé
Our aim in the study is to measure the area and volume of the tarsal bones and examine the typing of the talus and calcaneus joint surfaces according to sex. In our study, the area and volume measurements of 630 tarsal bones and the morphology of the talus/calcaneus were analyzed by transferring thin-section Computed Tomography (CT) images to the 3D Slicer program. The volume and area sizes of the foot bones are calcaneus, talus, cuboid, navicular, medial cuneiform, lateral cuneiform, and intermediate cuneiform, respectively. All area and volume values of males were statistically higher than females (p < 0.05). The right side calcaneus area, intermediate cuneiform area, and lateral cuneiform area values were statistically higher than the left side (p < 0.045, p < 0.044, p < 0.030, respectively). There was no statistical relationship between age and area/volume values (p > 0.05). Three different types were seen in the calcaneus and seven in the talus. The most common type in the calcaneus was B1 (40%), and the least common type was A (27.8%). Regardless of the subgroups, the most common type in the talus was type B (37.8%), while the least common type was E2 (1.1%). Although morphometric measurements of tarsal bones differed according to sex, they did not differ according to age. The frequency of occurrence of the types of articular surfaces of the talus and calcaneus varies according to populations. We think that the morphometry and morphology of tarsal bones will contribute to invasive procedures regarding tarsal bones and surrounding structures, and that three-dimensional bone modeling can be used to create educational materials.
Identifiants
pubmed: 39093463
doi: 10.1007/s00276-024-03450-6
pii: 10.1007/s00276-024-03450-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature.
Références
Arıncı K, Elhan A (2016) Anatomi 1. Cilt, 6.baskı. Güneş kitapevleri, Ankara
Aurichio TR, Rebelatto JR, de Castro AP (2011) The relationship between the body mass index (BMI) and foot posture in elderly people. Arch Gerontol Geriatr 52(2):e89–92. https://doi.org/10.1016/j.archger.2010.06.014
doi: 10.1016/j.archger.2010.06.014
pubmed: 20678817
Bunning and Barnett (1963) Variations in the talocalcaneal articulations. J Anat Lond 97:643
Campos FF, Pellico LG (1989) Talar articular facets (facies articulares talares) in human calcanei. Acta Anat 134:124–127
doi: 10.1159/000146675
Carrara C, Belvedere C, Caravaggi P et al (2021) Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg 27(2):168–174. https://doi.org/10.1016/j.fas.2020.03.013
doi: 10.1016/j.fas.2020.03.013
pubmed: 32370949
Cho HJ, Kwak DS, Kim IB (2014) Analysis of movement axes of the ankle and subtalar joints: relationship with the articular surfaces of the talus. Proc IMechE Part H: J Eng Med 228(10):1053–1058. https://doi.org/10.1177/0954411914554820
doi: 10.1177/0954411914554820
Cingoz M, Cingoz E, Comert RG et al (2024) Anatomical factors in the development of medial-sided osteochondral lesion of the talus: a comparative analysis. Surg Radiol Anat 46:1145–1153. https://doi.org/10.1007/s00276-024-03397-8
doi: 10.1007/s00276-024-03397-8
pubmed: 38834726
Commean PK, Ju T, Liu L et al (2009) Tarsal and metatarsal bone mineral density measurement using volumetric quantitative computed tomography. J Digit Imaging 22(5):492–502. https://doi.org/10.1007/s10278-008-9118-z
doi: 10.1007/s10278-008-9118-z
pubmed: 18478296
Dursun A, Yılmaz V, Kastamoni Y et al (2021) Anadolu Popülasyonunda Talus ile Calcaneus’un Morfometrik Özellikleri ve Ortak Eklem Yüzlerinin Tiplendirilmesi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 12(3):351–363. https://doi.org/10.22312/sdusbed.961431
doi: 10.22312/sdusbed.961431
El O, Akcali O, Kosay C et al (2006) Flexible flatfoot and related factors in primary school children: a report of a screening study. Rheumatol Int 26(11):1050–1053. https://doi.org/10.1007/s00296-006-0128-1
doi: 10.1007/s00296-006-0128-1
pubmed: 16670858
Fan Y, Fan Y, Li Z et al (2011) Optimal Principle of Bone structure. PLoS ONE 6(12):e28868. https://doi.org/10.1371/journal.pone.0028868
doi: 10.1371/journal.pone.0028868
pubmed: 22194933
pmcid: 3241678
Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
doi: 10.1016/j.mri.2012.05.001
pubmed: 22770690
pmcid: 3466397
Ferrari J, Hopkinson DA, Linney AD (2004) Size and shape differences between male and female foot bones: is the female foot predisposed to hallux abducto valgus deformity? J Am Podiatr Med Assoc 94(5):434–452
doi: 10.7547/0940434
pubmed: 15377719
Garg R, Babuta S, Mogra K et al (2013) Study of variations in pattern of calcaneal articular facets in human tali in the population of rajasthan (India). PJSR 6:19–23
Gökmen FG (2003) Sistematik Anatomi. Güven kitabevi, İzmir
Guiotto A, Sawacha Z, Guarneri G et al (2013) The role of foot morphology on foot function in diabetic subjects with or without neuropathy. Gait Posture 37(4):603–610
doi: 10.1016/j.gaitpost.2012.09.024
pubmed: 23159679
Gupta SC, Gupta CD, Arora AK (1977) Pattern of talar articular facets in Indian calcanei. J Anat 124(3):651–655
pubmed: 604335
pmcid: 1234663
Hawes MR, Sovak D, Miyashita M et al (1994) Ethnic differences in forefoot shape and the determination of shoe comfort. Ergonomics 37(1):187–196. https://doi.org/10.1080/00140139408963637
doi: 10.1080/00140139408963637
pubmed: 8112275
Hillstrom HJ, Song J, Kraszewski AP et al (2013) Foot type biomechanics part 1: structure and function of the asymptomatic foot. Gait Posture 37(3):445–451. https://doi.org/10.1016/j.gaitpost.2012.09.007
doi: 10.1016/j.gaitpost.2012.09.007
pubmed: 23107625
Hongyu C, Haowen X, Xiepeng Z et al (2020) Three-dimensional morphological analysis and clinical application of ankle joint in Chinese population based on CT reconstruction Surg Radiol Anat 42:1175–1182. https://doi.org/10.1007/s00276-020-02482-y
doi: 10.1007/s00276-020-02482-y
pubmed: 32361880
Igbigbi PS, Mutesasira AN (2003) Calcaneal angle in Ugandans. Clin Anat 16(4):328–330. https://doi.org/10.1002/ca.10104
doi: 10.1002/ca.10104
pubmed: 12794916
Ilgaz HB, Ülkir M (2022) Talus Kemiğinin Bazı Morfolojik Ve Morfometrik Özelliklerinin Değerlendirilmesi. KOU Sag Bil Derg 8(2):134–138
doi: 10.30934/kusbed.1020790
Jung MH, Choi BY, Lee JY et al (2015) Types of subtalar joint facets. Surg Radiol Anat 37(6):629–638. https://doi.org/10.1007/s00276-015-1472-1
doi: 10.1007/s00276-015-1472-1
pubmed: 25822134
Keles Coskun N, Arican RY, Utuk A et al (2009) The incidence of accessory navicular bone types in Turkish subjects. Surg Radiol Anat 31(9):675–679. https://doi.org/10.1007/s00276-009-0502-2
doi: 10.1007/s00276-009-0502-2
pubmed: 19367354
Nagar SK, Ojaswini M, Dharati K et al (2012) Types of talar articular facets and morphometric measurements of the human calcaneus bone. Natl J Med Res 2(2):128–132
Nozaki S, Watanabe K, Katayose M (2017) Three-dimensional morphometric analysis of the talus: implication for variations in kinematics of the subtalar joint. Surg Radiol Anat 39(10):1097–1106. https://doi.org/10.1007/s00276-017-1851-x
doi: 10.1007/s00276-017-1851-x
pubmed: 28378052
Prasad SA, Rajasekhar SSSN (2019) Morphometric analysis of talus and calcaneus. Surg Radiol Anat 41(1):9–24. https://doi.org/10.1007/s00276-018-2101-6
doi: 10.1007/s00276-018-2101-6
pubmed: 30196483
Requist MR, Sripanich Y, Peterson AC et al (2021) Semi-automatic micro-CT segmentation of the midfoot using calibrated thresholds. Int J Comput Assist Radiol Surg 16(3):387–396. https://doi.org/10.1007/s11548-021-02318-z
doi: 10.1007/s11548-021-02318-z
pubmed: 33606178
Shahabpour M, Devillé A, Van Roy P et al (2011) Magnetic resonance imaging of anatomical variants of the subtalar joint. Surg Radiol Anat 33(7):623–630. https://doi.org/10.1007/s00276-011-0788-8
doi: 10.1007/s00276-011-0788-8
pubmed: 21340734
Shoukry FA, Aref YK, Sabry AAE (2012) Evaluation of the normal calcaneal angles in Egyptian population. Alex J Med 48(2):91–97. https://doi.org/10.1016/j.ajme.2011.07.001
doi: 10.1016/j.ajme.2011.07.001
Stephan D, Panzer S, Göttlinger M et al (2014) Analysis of the intra-individual differences of the joint surfaces of the calcaneus. Comput Methods Biomech BioMed Eng 17(15):1635–1641. https://doi.org/10.1080/10255842.2012.759564
doi: 10.1080/10255842.2012.759564
Uygur M, Atamaz F, Celik S et al (2009) The types of talar articular facets and morphometric measurements of the human calcaneus bone on Turkish race. Arch Orthop Trauma Surg 129(7):909–914. https://doi.org/10.1007/s00402-008-0729-0
doi: 10.1007/s00402-008-0729-0
pubmed: 18810474
Wang S, Yu J, Lyu J et al (2023) Statistical shape modeling of mean shape and principal variability of the human talar bone in the Chinese population. J Orthop Surg (Hong Kong) 31(3):1–8. https://doi.org/10.1177/1022553623120653
doi: 10.1177/1022553623120653
Wu J, Liu H, Xu C (2022) The optimal procedure for lateral column lengthening calcaneal osteotomy according to anatomical patterns of the subtalar joint: an anatomical study in the Chinese population. BMC Musculoskelet Disord 5(1):751. https://doi.org/10.1186/s12891-022-05715-w
doi: 10.1186/s12891-022-05715-w