Impact of Experimental Tuberculosis on Fertility of Female BALB/c Mice.

M. tuberculosis inbred mice microbiota pregnancy

Journal

Bulletin of experimental biology and medicine
ISSN: 1573-8221
Titre abrégé: Bull Exp Biol Med
Pays: United States
ID NLM: 0372557

Informations de publication

Date de publication:
02 Aug 2024
Historique:
received: 23 10 2023
medline: 2 8 2024
pubmed: 2 8 2024
entrez: 2 8 2024
Statut: aheadofprint

Résumé

The study revealed no effects of pregnancy and childbirth on the course of tuberculosis in female BALB/c mice after aerosol infection with Mycobacterium tuberculosis. However, we demonstrated a negative effect of tuberculosis infection on the fertility of infected females, which manifested in a longer period from mating to pregnancy and in a smaller litter size. Impaired reproductive function in response to the effect of the systemic infectious process was accompanied by the development of immunosuppression confirmed by an immunological test (delayed-type hypersensitivity to tuberculin) and the formation of genital tract dysbiosis during pregnancy and postpartum period.

Identifiants

pubmed: 39093472
doi: 10.1007/s10517-024-06168-y
pii: 10.1007/s10517-024-06168-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Young D. Animal models of tuberculosis. Eur. J. Immunol. 2009;39(8):2011-2014. https://doi.org/10.1002/eji.200939542
doi: 10.1002/eji.200939542 pubmed: 19672894
Cooper AM. Mouse model of tuberculosis. Cold Spring Harb. Perspect. Med. 2014;5(2):a018556. https://doi.org/10.1101/cshperspect.a018556
doi: 10.1101/cshperspect.a018556 pubmed: 25256174
Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J. Med. Res. 2018;147(5):456-463. https://doi.org/10.4103/ijmr.IJMR_554_18
doi: 10.4103/ijmr.IJMR_554_18 pubmed: 30082569 pmcid: 6094516
Driver ER, Ryan GJ, Hoff DR, Irwin SM, Basaraba RJ, Kramnik I, Lenaerts AJ. Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012;56(6):3181-3195. https://doi.org/10.1128/AAC.00217-12
doi: 10.1128/AAC.00217-12 pubmed: 22470120 pmcid: 3370740
Calderon VE, Valbuena G, Goez Y, Judy BM, Huante MB, Sutjita P, Johnston RK, Estes DM, Hunter RL, Actor JK, Cirillo JD, Endsley JJ. A humanized mouse model of tuberculosis. PLoS One. 2013;8(5):e63331. https://doi.org/10.1371/journal.pone.0063331
doi: 10.1371/journal.pone.0063331 pubmed: 23691024 pmcid: 3656943
Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB, Moss C, Gutierrez NM, Bellerose MM, Barreira-Silva P, Phuah JY, Baker RE, Behar SM, Kornfeld H, Evans TG, Beamer G, Sassetti CM. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. mBio. 2016;7(5):e01516-16. https://doi.org/10.1128/mBio.01516-16
Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis. Model. Mech. 2016;9(7):779-788. https://doi.org/10.1242/dmm.025643
doi: 10.1242/dmm.025643 pubmed: 27482816 pmcid: 4958312
Apt AS, Kramnik I, McMurray DN. Editorial: mycobaceria — host interactions: genetics, immunity, pathology. Front. Cell. Infect. Microbiol. 2020;10:611216. https://doi.org/10.3389/fcimb.2020.611216
doi: 10.3389/fcimb.2020.611216 pubmed: 33194847 pmcid: 7661744
Plumlee CR, Duffy FJ, Gern BH, Delahaye JL, Cohen SB, Stoltzfus CR, Rustad TR, Hansen SG, Axthelm MK, Picker LJ, Aitchison JD, Sherman DR, Ganusov VV, Gerner MY, Zak DE, Urdahl KB. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis More closely models human tuberculosis. Cell Host Microbe. 2021;29(1):68-82.e5. https://doi.org/10.1016/j.chom.2020.10.003
doi: 10.1016/j.chom.2020.10.003 pubmed: 33142108
Logunova N, Korotetskaya M, Polshakov V, Apt A. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical class II H2-Ab1 gene. PLoS Genet. 2015;11(11):e1005672. https://doi.org/10.1371/journal.pgen.1005672
doi: 10.1371/journal.pgen.1005672 pubmed: 26618355 pmcid: 4664271
Nikonenko BG, Logunova NN, Bocharova IV, Kayukova SI. The role of host genetics in the efficiency of anti-tuberculosis vaccination on the example of experimental tuberculosis. Fundamental Research in Phthisiology. Ergeshov AE, ed. Moscow, 2023. P. 216-221. Russian.
Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog. 2012;8(5):e1002607. https://doi.org/10.1371/journal.ppat.1002607
doi: 10.1371/journal.ppat.1002607 pubmed: 22589713 pmcid: 3349743
Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, Dhar N, Pasca MR, Buroni S, Lucarelli AP, Milano A, De Rossi E, Belanova M, Bobovska A, Dianiskova P, Kordulakova J, Sala C, Fullam E, Schneider P, McKinney JD, Brodin P, Christophe T, Waddell S, Butcher P, Albrethsen J, Rosenkrands I, Brosch R, Nandi V, Bharath S, Gaonkar S, Shandil RK, Balasubramanian V, Balganesh T, Tyagi S, Grosset J, Riccardi G, Cole ST. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801-804. https://doi.org/10.1126/science.1171583
doi: 10.1126/science.1171583 pubmed: 19299584 pmcid: 3128490
Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, Moodley S, Mgaga Z, Tapley A, Bester LA, Singh S, Grosset JH, Almeida DV. Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob. Agents Chemother. 2015;59(6):3042-3051. https://doi.org/10.1128/AAC.00260-15
doi: 10.1128/AAC.00260-15 pubmed: 25753644 pmcid: 4432183
Tasneen R, Williams K, Amoabeng O, Minkowski A, Mdluli KE, Upton AM, Nuermberger EL. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob. Agents Chemother. 2015;59(1):129-135. https://doi.org/10.1128/AAC.03822-14
doi: 10.1128/AAC.03822-14 pubmed: 25331697
Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, Bishai WR, Pomper MG, Nuermberger EL, Jain SK. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J. Infect. Dis. 2012;205(4):595-602. https://doi.org/10.1093/infdis/jir786
doi: 10.1093/infdis/jir786 pubmed: 22198962
Kayukova SI, Donnikov AE, Bocharova IV, Tumanova EL, Mnikhovich MV, Nikonenko BV. Modeling the inflammatory process in the reproductive organs of female mice of the C57BL/6 and I/ST inbred strains with aerosolized mycobacterium tuberculosis. Akush. Ginekol. 2019;(9):118-125. Russian. https://doi.org/10.18565/aig.2019-9.118-125
Nozdrachev AD, Polyakov EL, Maslyukov PM. Anatomy of the Laboratory Mouse. St. Petersburg, 2012. P. 139-154. Russian.
Sukhikh GT, Kayukova SI, Bocharova IV, Donnikov AE, Lepekha LN, Demikhova OV, Uvarova EV, Berezovskii YS, Smirnova TG. Peculiarities of the Inflammatory Process in the Reproductive Organs of C57Bl/6 Female Mice with Experimental Tuberculosis. Bull. Exp. Biol. Med. 2016;160(6):787-90. https://doi.org/10.1007/s10517-016-3310-9
doi: 10.1007/s10517-016-3310-9 pubmed: 27165069

Auteurs

S I Kayukova (SI)

Central Research Institute of Tuberculosis, Moscow, Russia. kajukovalnp@gmail.com.

N L Karpina (NL)

Central Research Institute of Tuberculosis, Moscow, Russia.

V A Ulyumdzhieva (VA)

Central Research Institute of Tuberculosis, Moscow, Russia.

L A Semenova (LA)

Central Research Institute of Tuberculosis, Moscow, Russia.

A E Donnikov (AE)

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia.

I V Bocharova (IV)

Central Research Institute of Tuberculosis, Moscow, Russia.

B V Nikonenko (BV)

Central Research Institute of Tuberculosis, Moscow, Russia.

Classifications MeSH