Development of QSARs for cysteine-containing di- and tripeptides with antioxidant activity:influence of the cysteine position.
Antioxidant activity prediction
Cysteine
Dipeptides and tripeptides
Foods
QSAR
Journal
Journal of computer-aided molecular design
ISSN: 1573-4951
Titre abrégé: J Comput Aided Mol Des
Pays: Netherlands
ID NLM: 8710425
Informations de publication
Date de publication:
02 Aug 2024
02 Aug 2024
Historique:
received:
28
02
2024
accepted:
22
07
2024
medline:
2
8
2024
pubmed:
2
8
2024
entrez:
2
8
2024
Statut:
epublish
Résumé
Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R
Identifiants
pubmed: 39093524
doi: 10.1007/s10822-024-00567-z
pii: 10.1007/s10822-024-00567-z
doi:
Substances chimiques
Cysteine
K848JZ4886
Antioxidants
0
Dipeptides
0
Oligopeptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
27Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Mardani M, Badakné K, Farmani J, Aluko R (2023) Antioxidant peptides: overview of production, properties, and applications in food systems. Rev Food Sci Food Saf 22:46–106. https://doi.org/10.1111/1541-4337.13061
doi: 10.1111/1541-4337.13061
Vandamme J, Nikiforov A, De Roose M et al (2016) Controlled accelerated oxidation of oleic acid using a DBD plasma: determination of volatile oxidation compounds. Food Res Inter 79:54–63. https://doi.org/10.1016/j.foodres.2015.11.028
doi: 10.1016/j.foodres.2015.11.028
Velasco J, Dobarganes C, Márquez-Ruiz G (2010) Oxidative rancidity in foods and food quality. Woodhead Publishing Ser Food Sci Technol Nutr 3–32. https://doi.org/10.1533/9781845699260.1.3
López-Pedrouso M, Lorenzo J, Franco D (2022) Advances in Natural antioxidants for Food Improvement. Antioxid 11:1825. https://doi.org/10.3390/antiox11091825
doi: 10.3390/antiox11091825
Barati E, Nikzad H, Karimian M (2020) Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 77:93–113. https://doi.org/10.1007/s00018-019-03253-8
doi: 10.1007/s00018-019-03253-8
pubmed: 31377843
Wang T, Zhao Q, Wang Q (2013) Production and antioxidant properties of Marine-derived bioactive peptides. Mar Prot and Pept Chap. 18. Wiley, Hoboken, Nueva Jersey. https://doi.org/10.1002/9781118375082.ch18 ., United States
doi: 10.1002/9781118375082.ch18
Wang L, Ma M, Yu Z, Du SK (2021) Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem 352:129399. https://doi.org/10.1016/j.foodchem.2021.129399
doi: 10.1016/j.foodchem.2021.129399
pubmed: 33662918
Iwao Y, Ishima Y, Yamada J et al (2022) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64:450–454. https://doi.org/10.1002/iub.567
doi: 10.1002/iub.567
Vega-Hissi EG, Andrada MF, Díaz MG, Garro-Martinez JC (2019) Computational study of the hydrogen peroxide scavenging mechanism of allyl methyl disulide, an antioxidant compound from garlic. Mol Div 23:985–995. https://doi.org/10.1007/s11030-019-09927-6
doi: 10.1007/s11030-019-09927-6
Díaz MG, Andrada MF, Vega-Hissi EG, Garro-Martinez JC (2019) Density functional theory study of the oxidation reaction in the gas and aqueous phase of allyl methyl disulfide with hydroxyl radical. Struct Chem 30. https://doi.org/10.1007/s11224-018-1198-x
Anjum NA, Ahmad I, Mohmood I, Pacheco M et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—A review. Environ Exp Bot 75:307–324. https://doi.org/10.1016/j.envexpbot.2011.07.002
doi: 10.1016/j.envexpbot.2011.07.002
Evaluation of Certain Food Additives and Contaminants (2013) Seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ
Lu X, Zhang L, Sun Q, Song G, Huang J (2019) Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 116:707–716. https://doi.org/10.1016/j.foodres.2018.09.001
doi: 10.1016/j.foodres.2018.09.001
pubmed: 30716998
Xu B, Dong Q, Yu C, Chen H et al (2024) Advances in Research on the activity evaluation, mechanism and structure-activity relationships of Natural antioxidant peptides. Antiox 13(4):479. https://doi.org/10.3390/antiox13040479
doi: 10.3390/antiox13040479
Hu Y, Ni C, Wang Y, Yu X et al (2023) Research Progress on the Preparation and function of antioxidant peptides from Walnuts. Int J Mol Sci 24(19):14853. https://doi.org/10.3390/ijms241914853
doi: 10.3390/ijms241914853
pubmed: 37834300
pmcid: 10573205
Zhang Y, Li Y, Quan Z, Xiao P, Duan J-A (2024) New insights into antioxidant peptides: an overview of efficient screening, evaluation models, Molecular mechanisms, and applications. Antiox 13(2):203. https://doi.org/10.3390/antiox13020203
doi: 10.3390/antiox13020203
Tian M, Fang B, Jiang L et al (2015) Structure-activity relationship of a series of antioxidanttripeptides derived from β-Lactoglobulin using QSAR modeling. Dairy Sci Technol 95:451–463. https://doi.org/10.1007/s13594-015-0226-5
doi: 10.1007/s13594-015-0226-5
Chen N, Chen J, Yao B, Li Z (2018) QSAR Study on antioxidant tripeptides and the antioxidant activity of the designed tripeptides in Free Radical systems. Mol 23:1407. https://doi.org/10.3390/molecules23061407
doi: 10.3390/molecules23061407
Uno S, Kodama D, Yukawa H et al (2020) Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides. J Pept Sci 26:3238. https://doi.org/10.1002/psc.3238
doi: 10.1002/psc.3238
Du Z, Wang D, Li Y (2022) Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR modeling of antioxidant tripeptides. Am Chem Soc 7:25760–25771. https://doi.org/10.1021/acsomega.2c03062
doi: 10.1021/acsomega.2c03062
Lu X, Jia C, Gao J et al (2021) Structure–activity relationship and molecular docking analysis of cysteine-containing dipeptides as antioxidant and ACE inhibitory. Inter J Food Sci Technol 56:2789–2803. https://doi.org/10.1111/ijfs.14914
doi: 10.1111/ijfs.14914
Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 2. Application of the novel 3D Molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705. https://doi.org/10.1021/ci0155053
doi: 10.1021/ci0155053
pubmed: 12086531
Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 1. Theory of the novel 3D Molecular descriptors. J Chem Inf Comput Sci 42:682–692. https://doi.org/10.1021/ci015504a
doi: 10.1021/ci015504a
pubmed: 12086530
Livingstone DJ (2000) The characterization of chemical structure using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209. https://doi.org/10.1021/ci990162i
doi: 10.1021/ci990162i
pubmed: 10761119
Todeschini RL, Lasagni M (1994) New Molecular descriptors for 2D- and 3D-Structures. Theory. J Chemom 8:263–273. https://doi.org/10.1002/cem.1180080405
doi: 10.1002/cem.1180080405
Gasteiger G, Sasowski J, Selzer P et al (1996) Chemical information in 3D space. J Chem Inf Comput Sci 36:1030–1037. https://doi.org/10.1021/ci960343
doi: 10.1021/ci960343
Schur JH, Selzer P, Gasteiger J (1996) The coding of three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344. https://doi.org/10.1021/ci950164c
doi: 10.1021/ci950164c
Yap CW (2011) PaDEL-descriptor: an open-source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707
doi: 10.1002/jcc.21707
pubmed: 21425294
HyperChem Computational Chemistry Software Package; ver. 8.0: Hypercube, Inc (2004) Gainesville, FL, software http://www.hyper.com
Kaufman L, Rousseeuw P (2005) Finding groups in data: an introduction to Cluster Analysis. Wiley. https://doi.org/10.2307/2532178
Roy K, Kar S, Das RN (2015) A Primer on QSAR/QSPR Modeling. SpringerBriefs in Molecular Science. https://doi.org/10.1007/978-3-319-17281-1
Matlab 7.0. The MathWorks Inc. Natick, Massachusetts (2014) software http://www.mathworks.com
Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50:1542–1548. https://doi.org/10.1021/ci100103r
doi: 10.1021/ci100103r
pubmed: 20722426
Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2011) Advances in the replacement and enhanced replacement method in QSAR and QSPR theories. J Chem Inf Model 51:1575–1581. https://doi.org/10.1021/ci200079b
doi: 10.1021/ci200079b
pubmed: 21644502
Hansch C, Sammes PG, Taylor JB (1990) Computers and the Medicinal chemist. Comprehensive Medicinal Chemistry, vol 4. Pergamon, Oxford, pp 33–58
Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
doi: 10.1016/S1093-3263(01)00123-1
pubmed: 11858635
Wold S, Eriksson L (1995) Statistical validation of qsar results. Chemometric Methods Mol Des 309–318. https://doi.org/10.1002/9783527615452.ch5
Fatemi MH, Ghareh Chahi Z (2012) QSPR-based estimation of the half-lives for polychlorinated biphenyl congeners. SAR and QSAR Environ Res 23:155–168 (2012). https://doi.org/10.1080/1062936X.2011.645876
Ibrahim M, Uzairu A, Uba S, Shallangwa GA (2020) Quantitative structure-activity relationship, molecular docking, drug-likeness, and pharmacokinetic studies of some non-small cell lung cancer therapeutic agents. Beni-Suef Univ J Basic Appl Sci 9:49. https://doi.org/10.1186/s43088-020-00077-5
doi: 10.1186/s43088-020-00077-5
Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17
doi: 10.1186/1758-2946-4-17
pubmed: 22889332
pmcid: 3542060
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2023) PubChem 2023 update. Nucleic Acids Res 51(D1):D1373–D1380. https://doi.org/10.1093/nar/gkac956
doi: 10.1093/nar/gkac956
pubmed: 36305812