Rational combinatorial targeting by adapter CAR-T-cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 30 01 2024
accepted: 09 07 2024
revised: 14 06 2024
medline: 3 8 2024
pubmed: 3 8 2024
entrez: 2 8 2024
Statut: aheadofprint

Résumé

Targeting AML by chimeric antigen receptor T-cells (CAR-T) is challenging due to the promiscuous expression of AML-associated antigens in healthy hematopoiesis and high degree of inter- and intratumoral heterogeneity. Here, we present single-cell expression data of AML-associated antigens in 30 primary pediatric AML samples. We identified CD33, CD38, CD371, IL1RAP and CD123 as the most frequently expressed. Notably, high variability was observed not only across the different patient samples but also among leukemic cells of the same patient suggesting the necessity of multiplexed targeting approaches. To address this need, we utilized our modular Adapter CAR (AdCAR) platform, enabling precise qualitative and quantitative control over CAR-T-cell function. We show highly efficient and target-specific activity for newly generated adapter molecules (AMs) against CD33, CD38, CD123, CD135 and CD371, both in vitro and in vivo. We reveal that inherent intratumoral heterogeneity in antigen expression translates into antigen escape and therapy failure to monotargeted CAR-T therapy. Further, we demonstrate in PDX models that rational combinatorial targeting by AdCAR-T-cells can cure heterogenic disease. In conclusion, we elucidate the clinical relevance of heterogeneity in antigen expression in pediatric AML and present a novel concept for precision immunotherapy by combinatorial targeting utilizing the AdCAR platform.

Identifiants

pubmed: 39095503
doi: 10.1038/s41375-024-02351-2
pii: 10.1038/s41375-024-02351-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 411791562
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 411791562
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 411791562

Informations de copyright

© 2024. The Author(s).

Références

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl J Med. 2018;378:439–48.
pubmed: 29385370 pmcid: 5996391 doi: 10.1056/NEJMoa1709866
Cappell KM, Sherry RM, Yang JC, Goff SL, Vanasse DA, McIntyre L, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J Clin Oncol. 2020;38:3805–15.
pubmed: 33021872 pmcid: 7655016 doi: 10.1200/JCO.20.01467
Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36:2267–80.
pubmed: 29812997 pmcid: 6067798 doi: 10.1200/JCO.2018.77.8084
Gill S, Brudno JN. CAR T-cell therapy in hematologic malignancies: clinical role, toxicity, and unanswered questions. Am Soc Clin Oncol Educ Book. 2021;41:1–20.
pubmed: 33989023
Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–8.
pubmed: 28658204 doi: 10.1038/nature22993
Paczulla AM, Rothfelder K, Raffel S, Konantz M, Steinbacher J, Wang H, et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019;572:254–9.
pubmed: 31316209 pmcid: 6934414 doi: 10.1038/s41586-019-1410-1
McKenzie MD, Ghisi M, Oxley EP, Ngo S, Cimmino L, Esnault C, et al. Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. Cell Stem Cell. 2019;25:258–72.e259
pubmed: 31374198 doi: 10.1016/j.stem.2019.07.001
Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell. 2017;32:506–19.e505
pubmed: 29017060 pmcid: 7025434 doi: 10.1016/j.ccell.2017.09.004
Haubner S, Perna F, Kohnke T, Schmidt C, Berman S, Augsberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74.
pubmed: 29946192 doi: 10.1038/s41375-018-0180-3
Arnone M, Konantz M, Hanns P, Paczulla Stanger AM, Bertels S, Godavarthy PS, et al. Acute myeloid leukemia stem cells: the challenges of phenotypic heterogeneity. Cancers. 2020;12:3742.
pubmed: 33322769 pmcid: 7764578 doi: 10.3390/cancers12123742
Seitz CM, Mittelstaet J, Atar D, Hau J, Reiter S, Illi C, et al. Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting. Oncoimmunology. 2021;10:2003532.
pubmed: 35686214 pmcid: 9172918 doi: 10.1080/2162402X.2021.2003532
Seitz CM, Kieble V, Illi C, Reiter S, Grote S, Mittelstaet J, et al. Combinatorial targeting of multiple shared antigens by adapter-CAR-T Cells (aCAR-Ts) allows target cell discrimination and specific lysis based on differential expression profiles. Blood. 2018;132:4543.
doi: 10.1182/blood-2018-99-115630
Grote S, Traub F, Mittelstaet J, Seitz C, Kaiser A, Handgretinger R, et al. Adapter chimeric antigen receptor (AdCAR)-Engineered NK-92 cells for the multiplex targeting of bone metastases. Cancers. 2021;13:1124.
pubmed: 33807875 pmcid: 7961358 doi: 10.3390/cancers13051124
Grote S, Mittelstaet J, Baden C, Chan KC-H, Seitz C, Schlegel P, et al. Adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cells: an off-the-shelf cellular therapeutic for universal tumor targeting. OncoImmunology. 2020;9:1825177.
pubmed: 33457105 pmcid: 7781805 doi: 10.1080/2162402X.2020.1825177
Atar D, Mast AS, Scheuermann S, Ruoff L, Seitz CM, Schlegel P. Adapter CAR T cell therapy for the treatment of B-lineage lymphomas. Biomedicines. 2022;10:2420.
pubmed: 36289682 pmcid: 9599140 doi: 10.3390/biomedicines10102420
Nixdorf D, Sponheimer M, Berghammer D, Engert F, Bader U, Philipp N, et al. Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML. Leukemia. 2023;37:1298–310.
pubmed: 37106163 pmcid: 10244166 doi: 10.1038/s41375-023-01905-0
Werchau N, Kotter B, Criado-Moronati E, Gosselink A, Cordes N, Lock D, et al. Combined targeting of soluble latent TGF-ss and a solid tumor-associated antigen with adapter CAR T cells. Oncoimmunology. 2022;11:2140534.
pubmed: 36387056 pmcid: 9662194 doi: 10.1080/2162402X.2022.2140534
Cordes N, Winter N, Kolbe C, Kotter B, Mittelstaet J, Assenmacher M, et al. Adapter-mediated transduction with lentiviral vectors: a novel tool for cell-type-specific gene transfer. Viruses. 2022;14:2157.
pubmed: 36298713 pmcid: 9607492 doi: 10.3390/v14102157
Willier S, Rothamel P, Hastreiter M, Wilhelm J, Stenger D, Blaeschke F, et al. CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy. Blood. 2021;137(Feb):1037–49.
pubmed: 33094319 doi: 10.1182/blood.2020006921
Lund J, Winter G, Jones PT, Pound JD, Tanaka T, Walker MR, et al. Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol. 1991;147:2657–62.
pubmed: 1833457 doi: 10.4049/jimmunol.147.8.2657
Trad R, Warda W, Alcazer V, Neto da Rocha M, Berceanu A, Nicod C, et al. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J Immunother Cancer. 2022;10:e004222.
pubmed: 35803613 pmcid: 9272123 doi: 10.1136/jitc-2021-004222
Lichtman EI, Du H, Shou P, Song F, Suzuki K, Ahn S, et al. Preclinical evaluation of B7-H3-specific chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Clin Cancer Res. 2021;27:3141–53.
pubmed: 33531429 pmcid: 8248479 doi: 10.1158/1078-0432.CCR-20-2540
Kaeding AJ, Barwe SP, Gopalakrishnapillai A, Ries RE, Alonzo TA, Gerbing RB, et al. Mesothelin is a novel cell surface disease marker and potential therapeutic target in acute myeloid leukemia. Blood Adv. 2021;5:2350–61.
pubmed: 33938941 pmcid: 8114558 doi: 10.1182/bloodadvances.2021004424
Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJ, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29:1637–47.
pubmed: 25721896 pmcid: 4644600 doi: 10.1038/leu.2015.52
Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–54.
pubmed: 24596416 pmcid: 3983612 doi: 10.1182/blood-2013-09-529537
Glisovic-Aplenc T, Diorio C, Chukinas JA, Veliz K, Shestova O, Shen F, et al. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv. 2023;7:4418–30.
pubmed: 37171449 pmcid: 10440474 doi: 10.1182/bloodadvances.2022007059
Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105:4247–54.
pubmed: 15728125 pmcid: 1895037 doi: 10.1182/blood-2004-11-4564
Cummins KD, Frey N, Nelson AM, Schmidt A, Luger S, Isaacs RE, et al. Treating relapsed/refractory (RR) AML with biodegradable anti-CD123 CAR modified T cells. Blood. 2017;130:1359.
Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53.e1419
pubmed: 29856956 pmcid: 6003425 doi: 10.1016/j.cell.2018.05.013
Sakemura R, Terakura S, Watanabe K, Julamanee J, Takagi E, Miyao K, et al. A tet-on inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol Res. 2016;4:658–68.
pubmed: 27329987 doi: 10.1158/2326-6066.CIR-16-0043
Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350:aab4077.
pubmed: 26405231 pmcid: 4721629 doi: 10.1126/science.aab4077
Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164:770–9.
pubmed: 26830879 pmcid: 4752902 doi: 10.1016/j.cell.2016.01.011
Richards RM, Zhao F, Freitas KA, Parker KR, Xu P, Fan A, et al. NOT-Gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discov. 2021;2:648–65.
pubmed: 34778803 pmcid: 8580619 doi: 10.1158/2643-3230.BCD-20-0208
Clemenceau B, Congy-Jolivet N, Gallot G, Vivien R, Gaschet J, Thibault G, et al. Antibody-dependent cellular cytotoxicity (ADCC) is mediated by genetically modified antigen-specific human T lymphocytes. Blood. 2006;107:4669–77.
pubmed: 16514054 doi: 10.1182/blood-2005-09-3775
Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM, et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res. 2014;74:93–103.
pubmed: 24197131 doi: 10.1158/0008-5472.CAN-13-1365
Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R, Li Z, et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res. 2012;18:6436–45.
pubmed: 23032741 doi: 10.1158/1078-0432.CCR-12-1449
Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S, et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 2012;72:1844–52.
pubmed: 22315351 pmcid: 3319867 doi: 10.1158/0008-5472.CAN-11-3890
Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci USA. 2016;113:E459–68.
pubmed: 26759369 pmcid: 4743815 doi: 10.1073/pnas.1524155113
Cartellieri M, Feldmann A, Koristka S, Arndt C, Loff S, Ehninger A, et al. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 2016;6:e458.
pubmed: 27518241 pmcid: 5022178 doi: 10.1038/bcj.2016.61
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173:1426–38.e1411
pubmed: 29706540 pmcid: 5984158 doi: 10.1016/j.cell.2018.03.038
Wermke M, Kraus S, Ehninger A, Bargou RC, Goebeler ME, Middeke JM, et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood. 2021;137:3145–8.
pubmed: 33624009 pmcid: 8176767 doi: 10.1182/blood.2020009759
Daver N, Alotaibi AS, Bucklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia. 2021;35:1843–63.
pubmed: 33953290 pmcid: 8257483 doi: 10.1038/s41375-021-01253-x
Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol. 2022;29:74–83.
pubmed: 35013048 pmcid: 8815830 doi: 10.1097/MOH.0000000000000703
Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130:2373–6.
pubmed: 29021230 doi: 10.1182/blood-2017-09-797712
Ravandi F, Stein AS, Kantarjian HM, Walter RB, Paschka P, Jongen-Lavrencic M, et al. A phase 1 first-in-human study of AMG 330, an anti-CD33 bispecific T-cell engager (BiTE®) antibody construct, in relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2018;132:25–5.
doi: 10.1182/blood-2018-99-109762
Uy GL, Aldoss I, Foster MC, Sayre PH, Wieduwilt MJ, Advani AS, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137:751–62.
pubmed: 32929488 pmcid: 7885824 doi: 10.1182/blood.2020007732
Brauchle B, Goldstein RL, Karbowski CM, Henn A, Li CM, Bucklein VL, et al. Characterization of a novel FLT3 BiTE molecule for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19:1875–88.
pubmed: 32518207 doi: 10.1158/1535-7163.MCT-19-1093
Tambaro FP, Singh H, Jones E, Rytting M, Mahadeo KM, Thompson P, et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia. 2021;35:3282–6.
pubmed: 33833386 pmcid: 8550958 doi: 10.1038/s41375-021-01232-2
Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res. 2021;27:3549–55.
pubmed: 33832948 doi: 10.1158/1078-0432.CCR-20-4543
Roboz GJ, DeAngelo DJ, Sallman DA, Guzman ML, Desai P, Kantarjian HM, et al. Ameli-01: Phase I, Open label dose-escalation and dose-expansion study to evaluate the safety, expansion, persistence and clinical activity of UCART123 (allogeneic engineered T-cells expressing anti-CD123 chimeric antigen receptor), administered in patients with relapsed/refractory acute myeloid leukemia. Blood. 2020;136:41–42.
doi: 10.1182/blood-2020-138984
Jetani H, Garcia-Cadenas I, Nerreter T, Thomas S, Rydzek J, Meijide JB, et al. CAR T-cells targeting FLT3 have potent activity against FLT3(-)ITD(+) AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia. 2018;32:1168–79.
pubmed: 29472720 doi: 10.1038/s41375-018-0009-0
Cui Q, Liang P, Dai H, Cui W, Cai M, Ding Z, et al. Case report: CD38-directed CAR-T cell therapy: A novel immunotherapy targeting CD38- positive blasts overcomes TKI and chemotherapy resistance of myeloid chronic myeloid leukemia in blastic phase. Front Immunol. 2022;13:1012981.
pubmed: 36524116 pmcid: 9744919 doi: 10.3389/fimmu.2022.1012981
Niswander LM, Graff ZT, Chien CD, Chukinas JA, Meadows CA, Leach LC, et al. Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica. 2023;108:457–71.
pubmed: 35950535 doi: 10.3324/haematol.2022.281456
Tashiro H, Sauer T, Shum T, Parikh K, Mamonkin M, Omer B, et al. Treatment of acute myeloid leukemia with t cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1. Mol Ther. 2017;25:2202–13.
pubmed: 28676343 pmcid: 5589064 doi: 10.1016/j.ymthe.2017.05.024
Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017;545:452–6.
pubmed: 28514453 pmcid: 5693219 doi: 10.1038/nature22367
Mihara K, Yanagihara K, Takigahira M, Imai C, Kitanaka A, Takihara Y, et al. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma. J Immunother. 2009;32:737–43.
pubmed: 19561535 doi: 10.1097/CJI.0b013e3181adaff1
Guo Y, Feng K, Tong C, Jia H, Liu Y, Wang Y, et al. Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment. Cell Mol Immunol. 2020;17:430–2.
pubmed: 31900459 pmcid: 7109086 doi: 10.1038/s41423-019-0355-5
Hejazi M, Zhang C, Bennstein SB, Balz V, Reusing SB, Quadflieg M, et al. CD33 delineates two functionally distinct NK cell populations divergent in cytokine production and antibody-mediated cellular cytotoxicity. Front Immunol. 2021;12:798087.
pubmed: 35058934 doi: 10.3389/fimmu.2021.798087
Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25:1341–55.
pubmed: 31501612 doi: 10.1038/s41591-019-0564-6
Rasche L, Vago L, Mutis T Tumour Escape from CAR-T Cells. In: Kroger N, Gribben J, Chabannon C, Yakoub-Agha I, Einsele H (eds). The EBMT/EHA CAR-T Cell Handbook: Cham (CH), 2022, pp 15-22.

Auteurs

Daniel Atar (D)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Lara Ruoff (L)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Anna-Sophia Mast (AS)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Simon Krost (S)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Moustafa Moustafa-Oglou (M)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Sophia Scheuermann (S)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.
Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany.
German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany.

Beate Kristmann (B)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Maximilian Feige (M)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Aysegül Canak (A)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Kathrin Wolsing (K)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Lennart Schlager (L)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Karin Schilbach (K)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Latifa Zekri (L)

Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany.

Martin Ebinger (M)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.
German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany.

Daniel Nixdorf (D)

Department of Medicine III, University Hospital, LMU, Munich, Germany.
Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.

Marion Subklewe (M)

Department of Medicine III, University Hospital, LMU, Munich, Germany.
Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.

Johannes Schulte (J)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Claudia Lengerke (C)

Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany.

Irmela Jeremias (I)

Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, Munich, Germany.
German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
Department of Pediatrics, Dr. Von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany.

Niels Werchau (N)

R&D Department, Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany.

Joerg Mittelstaet (J)

R&D Department, Miltenyi Biotec B.V. & CO. KG, Bergisch Gladbach, Germany.

Peter Lang (P)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.
Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany.
German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany.

Rupert Handgretinger (R)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany.

Patrick Schlegel (P)

School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.

Christian M Seitz (CM)

Department of General Pediatrics, Hematology and Oncology, University Children's Hospital, Tuebingen, Germany. christian.seitz@med.uni-heidelberg.de.
Excellence cluster iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany. christian.seitz@med.uni-heidelberg.de.
German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany. christian.seitz@med.uni-heidelberg.de.
Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany. christian.seitz@med.uni-heidelberg.de.
Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany. christian.seitz@med.uni-heidelberg.de.

Classifications MeSH