A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
02 Aug 2024
Historique:
received: 17 05 2023
accepted: 03 07 2024
medline: 3 8 2024
pubmed: 3 8 2024
entrez: 2 8 2024
Statut: aheadofprint

Résumé

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRH

Identifiants

pubmed: 39095587
doi: 10.1038/s41593-024-01724-1
pii: 10.1038/s41593-024-01724-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 725149
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-19-CE16-0021-02
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-18-CE14-00

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003).
pubmed: 12838330 doi: 10.1038/nrn1140
Belluscio, L., Koentges, G., Axel, R. & Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell 97, 209–220 (1999).
pubmed: 10219242 doi: 10.1016/S0092-8674(00)80731-X
Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).
pubmed: 10219241 doi: 10.1016/S0092-8674(00)80730-8
Lehman, M. N., Winans, S. S. & Powers, J. B. Medial nucleus of the amygdala mediates chemosensory control of male hamster sexual behavior. Science 210, 557–560 (1980).
pubmed: 7423209 doi: 10.1126/science.7423209
Baird, A. D., Wilson, S. J., Bladin, P. F., Saling, M. M. & Reutens, D. C. The amygdala and sexual drive: insights from temporal lobe epilepsy surgery. Ann. Neurol. 55, 87–96 (2004).
pubmed: 14705116 doi: 10.1002/ana.10997
Bayless, D. W. et al. A neural circuit for male sexual behavior and reward. Cell 186, 3862–3881 (2023).
pubmed: 37572660 doi: 10.1016/j.cell.2023.07.021
Keller, M., Pillon, D. & Bakker, J. Olfactory systems in mate recognition and sexual behavior. Vitam. Horm. 83, 331–350 (2010).
pubmed: 20831953 doi: 10.1016/S0083-6729(10)83014-6
Keverne, E. B. Importance of olfactory and vomeronasal systems for male sexual function. Physiol. Behav. 83, 177–187 (2004).
pubmed: 15488538 doi: 10.1016/j.physbeh.2004.08.013
Aoki, M. et al. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. Sci. Adv. 7, eabg4074 (2021).
pubmed: 34623921 pmcid: 8500514 doi: 10.1126/sciadv.abg4074
Mandiyan, V. S., Coats, J. K. & Shah, N. M. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat. Neurosci. 8, 1660–1662 (2005).
pubmed: 16261133 doi: 10.1038/nn1589
Wang, Z. et al. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J. Neurosci. 26, 7375–7379 (2006).
pubmed: 16837584 pmcid: 6674185 doi: 10.1523/JNEUROSCI.1967-06.2006
Duittoz, A. H. et al. Development of the gonadotropin-releasing hormone system. J. Neuroendocrinol. 34, e13087 (2022).
pubmed: 35067985 pmcid: 9286803 doi: 10.1111/jne.13087
Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).
pubmed: 27199290 doi: 10.1038/nrendo.2016.70
Bronson, F. H. The regulation of luteinizing hormone secretion by estrogen: relationships among negative feedback, surge potential, and male stimulation in juvenile, peripubertal, and adult female mice. Endocrinology 108, 506–516 (1981).
pubmed: 7449740 doi: 10.1210/endo-108-2-506
Dluzen, D. E., Ramirez, V. D., Carter, C. S. & Getz, L. L. Male vole urine changes luteinizing hormone-releasing hormone and norepinephrine in female olfactory bulb. Science 212, 573–575 (1981).
pubmed: 7010608 doi: 10.1126/science.7010608
Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005).
pubmed: 16290036 doi: 10.1016/j.cell.2005.09.027
Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).
pubmed: 16290037 doi: 10.1016/j.cell.2005.08.039
Casoni, F. et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143, 3969–3981 (2016).
pubmed: 27803058 doi: 10.1242/dev.139444
Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).
pubmed: 26194704 doi: 10.1038/nrendo.2015.112
Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).
pubmed: 27135215 doi: 10.1038/nn.4298
Belle, M. et al. Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017).
pubmed: 28340341 doi: 10.1016/j.cell.2017.03.008
Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).
pubmed: 25417164 doi: 10.1016/j.cell.2014.10.010
Spergel, D. J., Kruth, U., Hanley, D. F., Sprengel, R. & Seeburg, P. H. GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J. Neurosci. 19, 2037–2050 (1999).
pubmed: 10066257 pmcid: 6782541 doi: 10.1523/JNEUROSCI.19-06-02037.1999
Wang, J. & Hamill, O. P. Piezo2-peripheral baroreceptor channel expressed in select neurons of the mouse brain: a putative mechanism for synchronizing neural networks by transducing intracranial pressure pulses. J. Integr. Neurosci. 20, 825–837 (2021).
pubmed: 34997707 doi: 10.31083/j.jin2004085
Zeppilli, S. et al. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 10, e65445 (2021).
pubmed: 34292150 pmcid: 8352594 doi: 10.7554/eLife.65445
Jammal Salameh, L., Bitzenhofer, S. H., Hanganu-Opatz, I. L., Dutschmann, M. & Egger, V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 383, eadk8511 (2024).
pubmed: 38301001 doi: 10.1126/science.adk8511
Galliano, E. et al. Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. eLife 7, e32373 (2018).
pubmed: 29676260 pmcid: 5935487 doi: 10.7554/eLife.32373
Castle, M. J., Gershenson, Z. T., Giles, A. R., Holzbaur, E. L. & Wolfe, J. H. Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum. Gene Ther. 25, 705–720 (2014).
pubmed: 24694006 pmcid: 4137353 doi: 10.1089/hum.2013.189
Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).
pubmed: 25937170 pmcid: 4441592 doi: 10.1016/j.neuron.2015.03.065
Johnston, R. E. & Bronson, F. Endocrine control of female mouse odors that elicit luteinizing hormone surges and attraction in males. Biol. Reprod. 27, 1174–1180 (1982).
pubmed: 7159661 doi: 10.1095/biolreprod27.5.1174
Maruniak, J. A. & Bronson, F. H. Gonadotropic responses of male mice to female urine. Endocrinology 99, 963–969 (1976).
pubmed: 987903 doi: 10.1210/endo-99-4-963
Chu, Z. & Moenter, S. M. Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J. Neurosci. 25, 5740–5749 (2005).
pubmed: 15958740 pmcid: 1201448 doi: 10.1523/JNEUROSCI.0913-05.2005
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).
pubmed: 23663785 pmcid: 3767768 doi: 10.1016/j.cell.2013.04.017
Wen, S. et al. Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 152, 1515–1526 (2011).
pubmed: 21303944 doi: 10.1210/en.2010-1208
Wen, S. et al. Functional characterization of genetically labeled gonadotropes. Endocrinology 149, 2701–2711 (2008).
pubmed: 18325995 doi: 10.1210/en.2007-1502
Kang, N., Baum, M. J. & Cherry, J. A. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur. J. Neurosci. 29, 624–634 (2009).
pubmed: 19187265 pmcid: 2669936 doi: 10.1111/j.1460-9568.2009.06638.x
Kevetter, G. A. & Winans, S. S. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J. Comp. Neurol. 197, 99–111 (1981).
pubmed: 6164703 doi: 10.1002/cne.901970108
Pineda, R., Plaisier, F., Millar, R. P. & Ludwig, M. Amygdala kisspeptin neurons: putative mediators of olfactory control of the gonadotropic axis. Neuroendocrinology 104, 223–238 (2017).
pubmed: 27054958 doi: 10.1159/000445895
Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).
pubmed: 14573733 doi: 10.1056/NEJMoa035322
Topaloglu, A. K. et al. Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med. 366, 629–635 (2012).
pubmed: 22335740 doi: 10.1056/NEJMoa1111184
de Roux, N. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10972–10976 (2003).
pubmed: 12944565 pmcid: 196911 doi: 10.1073/pnas.1834399100
Stephens, S. B. Z. & Kauffman, A. S. Regulation and possible functions of kisspeptin in the medial amygdala. Front. Endocrinol. 8, 191 (2017).
doi: 10.3389/fendo.2017.00191
Lin, D. Y., Zhang, S. Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005).
pubmed: 15724148 doi: 10.1038/nature03414
Shani-Narkiss, H. et al. Young adult-born neurons improve odor coding by mitral cells. Nat. Commun. 11, 5867 (2020).
pubmed: 33203831 pmcid: 7673122 doi: 10.1038/s41467-020-19472-8
Hellier, V. et al. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat. Commun. 9, 400 (2018).
pubmed: 29374161 pmcid: 5786055 doi: 10.1038/s41467-017-02797-2
Manfredi-Lozano, M. et al. GnRH replacement rescues cognition in Down syndrome. Science 377, eabq4515 (2022).
pubmed: 36048943 pmcid: 7613827 doi: 10.1126/science.abq4515
Schang, A. L. et al. GnRH receptor gene expression in the developing rat hippocampus: transcriptional regulation and potential roles in neuronal plasticity. Endocrinology 152, 568–580 (2011).
pubmed: 21123436 doi: 10.1210/en.2010-0840
Skrapits, K. et al. The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia. eLife 10, e67714 (2021).
pubmed: 34128468 pmcid: 8245125 doi: 10.7554/eLife.67714
Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res 200, 295–303 (2009).
pubmed: 19146884 doi: 10.1016/j.bbr.2008.12.020
Choi, J. M. et al. Development of the main olfactory system and main olfactory epithelium-dependent male mating behavior are altered in Go-deficient mice. Proc. Natl Acad. Sci. USA 113, 10974–10979 (2016).
pubmed: 27625425 pmcid: 5047177 doi: 10.1073/pnas.1613026113
Adekunbi, D. A. et al. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J. Neuroendocrinol. 30, e12572 (2018).
pubmed: 29356147 pmcid: 5873280 doi: 10.1111/jne.12572
Lehman, M. N. & Winans, S. S. Vomeronasal and olfactory pathways to the amygdala controlling male hamster sexual behavior: autoradiographic and behavioral analyses. Brain Res. 240, 27–41 (1982).
pubmed: 7093718 doi: 10.1016/0006-8993(82)90641-2
Wood, R. I. & Newman, S. W. Integration of chemosensory and hormonal cues is essential for mating in the male Syrian hamster. J. Neurosci. 15, 7261–7269 (1995).
pubmed: 7472480 pmcid: 6578098 doi: 10.1523/JNEUROSCI.15-11-07261.1995
Gomez, D. M. & Newman, S. W. Differential projections of the anterior and posterior regions of the medial amygdaloid nucleus in the Syrian hamster. J. Comp. Neurol. 317, 195–218 (1992).
pubmed: 1573064 doi: 10.1002/cne.903170208
Kevetter, G. A. & Winans, S. S. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J. Comp. Neurol. 197, 81–98 (1981).
pubmed: 6164702 doi: 10.1002/cne.901970107
Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses 26, 433–445 (2001).
pubmed: 11369678 doi: 10.1093/chemse/26.4.433
Frasnelli, J., Lundstrom, J. N., Boyle, J. A., Katsarkas, A. & Jones-Gotman, M. The vomeronasal organ is not involved in the perception of endogenous odors. Hum. Brain Mapp. 32, 450–460 (2011).
pubmed: 20578170 doi: 10.1002/hbm.21035
Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).
pubmed: 23636330 pmcid: 3756938 doi: 10.1038/nature12143
Mayer, C. et al. Timing and completion of puberty in female mice depend on estrogen receptor alpha-signaling in kisspeptin neurons. Proc. Natl Acad. Sci. USA 107, 22693–22698 (2010).
pubmed: 21149719 pmcid: 3012491 doi: 10.1073/pnas.1012406108
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Imamura, F., Ito, A. & LaFever, B. J. Subpopulations of projection neurons in the olfactory bulb. Front. Neural Circuits 14, 561822 (2020).
pubmed: 32982699 pmcid: 7485133 doi: 10.3389/fncir.2020.561822
Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703 (2018).
pubmed: 30517858 pmcid: 6342206 doi: 10.1016/j.celrep.2018.11.034
Steyn, F. J. et al. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154, 4939–4945 (2013).
pubmed: 24092638 pmcid: 5398599 doi: 10.1210/en.2013-1502
Brock, O., Bakker, J. & Baum, M. J. Assessment of urinary pheromone discrimination, partner preference, and mating behaviors in female mice. Methods Mol. Biol. 1068, 319–329 (2013).
pubmed: 24014373 doi: 10.1007/978-1-62703-619-1_24
Chachlaki, K. et al. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci. Transl. Med. 14, eabh2369 (2022).
pubmed: 36197968 pmcid: 7613826 doi: 10.1126/scitranslmed.abh2369
Silva, M. S. B. et al. Female sexual behavior is disrupted in a preclinical mouse model of PCOS via an attenuated hypothalamic nitric oxide pathway. Proc. Natl Acad. Sci. USA 26, e2203503119 (2022).
doi: 10.1073/pnas.2203503119

Auteurs

Laurine Decoster (L)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Sara Trova (S)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.
Centro CMP3VdA, Istituto Italiano di Tecnologia (IIT), Aosta, Italy.

Stefano Zucca (S)

Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Janice Bulk (J)

Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.

Ayden Gouveia (A)

Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.

Gaetan Ternier (G)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Tori Lhomme (T)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Amandine Legrand (A)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Sarah Gallet (S)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Ulrich Boehm (U)

Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany.

Amanda Wyatt (A)

Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany.

Vanessa Wahl (V)

Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany.

Philipp Wartenberg (P)

Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany.

Erik Hrabovszky (E)

Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, Hungary.

Gergely Rácz (G)

Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.

Federico Luzzati (F)

Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Giulia Nato (G)

Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.

Marco Fogli (M)

Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Paolo Peretto (P)

Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Sonja C Schriever (SC)

German Center for Diabetes Research (DZD), Neuherberg, Germany.
Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.

Miriam Bernecker (M)

German Center for Diabetes Research (DZD), Neuherberg, Germany.
Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.
Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany.

Paul T Pfluger (PT)

German Center for Diabetes Research (DZD), Neuherberg, Germany.
Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany.
Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany.

Sophie M Steculorum (SM)

Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.
Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Serena Bovetti (S)

Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.

Sowmyalakshmi Rasika (S)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Vincent Prevot (V)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.

Mauro S B Silva (MSB)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.
Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Paolo Giacobini (P)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France. paolo.giacobini@inserm.fr.
Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France. paolo.giacobini@inserm.fr.

Classifications MeSH