Cardio- and Vasoprotective Effects of Quinacrine in an In Vivo Rat Model of Myocardial Ischemia/Reperfusion Injury.

microvascular obstruction myocardial infarction no-reflow quinacrine reperfusion injury

Journal

Bulletin of experimental biology and medicine
ISSN: 1573-8221
Titre abrégé: Bull Exp Biol Med
Pays: United States
ID NLM: 0372557

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 28 11 2023
medline: 4 8 2024
pubmed: 4 8 2024
entrez: 3 8 2024
Statut: aheadofprint

Résumé

This study aimed to investigate the cardioprotective effect of quinacrine in an in vivo model of myocardial ischemia/reperfusion injury. A 30-min regional myocardial ischemia followed by a 2-h reperfusion was modeled in anesthetized Wistar rats. Starting at the last minute of ischemia and during the first 9 min of reperfusion the rats in the control (n=8) and experimental (n=9) groups were injected with 0.9% NaCl and quinacrine solution (5 mg/kg), respectively. The area at risk and infarct size were evaluated by "double staining" with Evans blue and triphenyltetrazolium chloride. To assess vascular permeability in the area at risk zone, indocyanine green (ICG) and thioflavin S (ThS) were injected intravenously at the 90th and 120th minutes of reperfusion, respectively, to assess the no-reflow zone. The images of ICG and ThS fluorescence in transverse sections of rat hearts were obtained using a FLUM multispectral fluorescence organoscope. HR tended to decrease by 13% after intravenous administration of quinacrine and then recovered within 50 min. Quinacrine reduced the size of the necrotic zone (p=0.01), vascular permeability in the necrosis region, and the no-reflow area (p=0.027); at the same time, the area at risk did not significantly differ between the groups. Intravenous administration of quinacrine at the beginning of reperfusion of the rat myocardium reduces no-reflow phenomenon and infarct size.

Identifiants

pubmed: 39096448
doi: 10.1007/s10517-024-06154-4
pii: 10.1007/s10517-024-06154-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, Maehara A, Eitel I, Granger CB, Jenkins PL, Nichols M, Ben-Yehuda O. Relationship between infarct size and outcomes following primary pci: patient-level analysis from 10 randomized trials. J. Am. Coll. Cardiol. 2016;67(14):1674-1683. https://doi.org/10.1016/j.jacc.2016.01.069
doi: 10.1016/j.jacc.2016.01.069 pubmed: 27056772
Kloner RA. The importance of no-reflow/microvascular obstruction in the STEMI patient. Eur. Heart J. 2017;38(47):3511-3513. https://doi.org/10.1093/eurheartj/ehx288
doi: 10.1093/eurheartj/ehx288 pubmed: 29020371
Ndrepepa G, Kastrati A. Coronary no-reflow after primary percutaneous coronary intervention-current knowledge on pathophysiology, diagnosis, clinical impact and therapy. J. Clin. Med. 2023;12(17):5592. https://doi.org/10.3390/jcm12175592
doi: 10.3390/jcm12175592 pubmed: 37685660 pmcid: 10488607
Reffelmann T, Hale SL, Li G, Kloner RA. Relationship between no reflow and infarct size as influenced by the duration of ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2002;282(2):H766-H772. https://doi.org/10.1152/ajpheart.00767.2001
doi: 10.1152/ajpheart.00767.2001 pubmed: 11788428
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc. Res. 2019;115(7):1117-1130. https://doi.org/10.1093/cvr/cvz050
doi: 10.1093/cvr/cvz050 pubmed: 30825305 pmcid: 6529904
Gao XM, Wu QZ, Kiriazis H, Su Y, Han LP, Pearson JT, Taylor AJ, Du XJ. Microvascular leakage in acute myocardial infarction: characterization by histology, biochemistry, and magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2017;312(5):H1068-H1075. https://doi.org/10.1152/ajpheart.00073.2017
doi: 10.1152/ajpheart.00073.2017 pubmed: 28341632
He Z, Ma C, Yu T, Song J, Leng J, Gu X, Li J. Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury. Exp. Cell Res. 2019;376(2):227-235. https://doi.org/10.1016/j.yexcr.2019.01.022
doi: 10.1016/j.yexcr.2019.01.022 pubmed: 30716302
Matsui N, Okikawa T, Imajo N, Yasui Y, Fukuishi N, Akagi M. Enzymatic measurement of tryptase-like protease release from isolated perfused guinea pig heart during ischemia-reperfusion. Biol. Pharm. Bull. 2005;28(11):2149-2151. https://doi.org/10.1248/bpb.28.2149
doi: 10.1248/bpb.28.2149 pubmed: 16272708
Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, Garcia-Dorado D; CARDIOPROTECTION COST Action (CA16225). Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 2019;73(1):89-99. https://doi.org/10.1016/j.jacc.2018.09.086
Ravindran S, Kurian GA. The role of secretory phospholipases as therapeutic targets for the treatment of myocardial ischemia reperfusion injury. Biomed. Pharmacother. 2017;92:7-16. https://doi.org/10.1016/j.biopha.2017.05.042
doi: 10.1016/j.biopha.2017.05.042 pubmed: 28525795
Xiao YF, Zeind AJ, Kaushik V, Perreault-Micale CL, Morgan JP. Mechanism of suppression of cardiac L-type Ca(2+) currents by the phospholipase A(2) inhibitor mepacrine. Eur. J. Pharmacol. 2000;399(2-3):107-116. https://doi.org/10.1016/s0014-2999(00)00366-6
doi: 10.1016/s0014-2999(00)00366-6 pubmed: 10884509
Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding — a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal. 2011;9:13. https://doi.org/10.1186/1478-811X-9-13
doi: 10.1186/1478-811X-9-13 pubmed: 21569639 pmcid: 3117821
Pineda B, Pérez de la Cruz V, Hernández Pando R, Sotelo J. Quinacrine as a potential treatment for COVID-19 virus infection. Eur. Rev. Med. Pharmacol. Sci. 2021;25(1):556-566. https://doi.org/10.26355/eurrev_202101_24428
Sonin DL, Fayzullina DR, Zaitseva EA, Petrishchev NN. Antioxidant effect evaluation of drugs with different chemical structures by the degree of mast cell degranulation under photodynamic damage. Regionar. Krovoobr. Mikrotsirk. 2022;21(3):82-90. Russian. https://doi.org/10.24884/1682-6655-2022-21-3-82-90
Kang Uk, Papayan GV, Petrishchev NN, Berezin VB, Bae Soo-Jin, Kim SV. Multispectral fluorescence organoscopes for in vivo studies of laboratory animals and their organs. J. Opt. Technol. 2011;78(9):623-628. https://doi.org/10.1364/JOT.78.000623

Auteurs

D L Sonin (DL)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia. sonin_dl@almazovcentre.ru.
I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia. sonin_dl@almazovcentre.ru.

E I Pochkaeva (EI)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

G V Papayan (GV)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

S M Minasian (SM)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

D V Mukhametdinova (DV)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

E A Zaytseva (EA)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

D A Mochalov (DA)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

N N Petrishchev (NN)

I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

M M Galagudza (MM)

Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.

Classifications MeSH