Validation of conductivity tensor imaging against diffusion tensor magnetic resonance electrical impedance tomography.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 07 12 2023
accepted: 24 07 2024
medline: 4 8 2024
pubmed: 4 8 2024
entrez: 3 8 2024
Statut: epublish

Résumé

Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) and electrodeless conductivity tensor imaging (CTI) are two emerging modalities that can quantify low-frequency tissue anisotropic conductivity properties by assuming similar properties underlie ionic mobility and water diffusion. While both methods have potential applications to estimating neuro-modulation fields or formulating forward models used for electrical source imaging, a direct comparison of the two modalities has not yet been performed in-vitro or in-vivo. Therefore, the aim of this study was to test the equivalence of these two modalities. We scanned a tissue phantom and the head of human subject using DT-MREIT and CTI protocols and reconstructed conductivity tensor and effective low frequency conductivities. We found both gray and white matter conductivities recovered by each technique were equivalent within 0.05 S/m. Both DT-MREIT and CTI require multiple processing steps, and we further assess the effects of each factor on reconstructions and evaluate the extent to which different measurement mechanisms potentially cause discrepancies between the two methods. Finally, we discuss the implications for spectral models of measuring conductivity using these techniques. The study further establishes the credibility of CTI as an electrodeless non-invasive method of measuring low frequency conductivity properties.

Identifiants

pubmed: 39097661
doi: 10.1038/s41598-024-68551-z
pii: 10.1038/s41598-024-68551-z
doi:

Types de publication

Journal Article Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

17995

Subventions

Organisme : NIH HHS
ID : 1RF1MH114290-01
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Gabriel, C., Peyman, A. & Grant, E. H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 54, 4683–4878 (2009).
doi: 10.1088/0031-9155/54/16/002
Katscher, U., Stehning, C. & Tha, K. K. The impact of CSF pulsation on reconstructed brain conductivity. In Proceedings of the 26th Annual Meeting of the ISMRM 546 (ISMRM, 2018).
Seo, J. K. & Woo, E. J. Electrical tissue property imaging at low frequency using MREIT. IEEE Trans. Biomed. Eng. 61, 1390–1399 (2014).
doi: 10.1109/TBME.2014.2298859 pubmed: 24759274
Seo, J. & Woo, E. Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev. 53, 40–68 (2011).
doi: 10.1137/080742932
Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).
doi: 10.1016/S0006-3495(94)80775-1 pubmed: 8130344 pmcid: 1275686
Tuch, D. S., Wedeen, V. J., Dale, A. M., George, J. S. & Belliveau, J. W. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. U. S. A. 98, 11697–11701 (2001).
doi: 10.1073/pnas.171473898 pubmed: 11573005 pmcid: 58792
Kwon, O., Jeong, W. C., Sajib, S. Z. K., Kim, H. J. & Woo, E. J. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules. Phys. Med. Biol. 59, 2955–2974 (2014).
doi: 10.1088/0031-9155/59/12/2955 pubmed: 24841854
Sajib, S. Z. K., Kwon, O. I., Kim, H. J. & Woo, E. J. Electrodeless conductivity tensor imaging (CTI) using MRI: Basic and animal experiments. Biomed. Eng. Lett. 8, 273–282 (2018).
doi: 10.1007/s13534-018-0066-3 pubmed: 30603211 pmcid: 6208539
Lee, M. B., Jahng, G.-H., Kim, H. J., Woo, E. J. & Kwon, O. I. Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imaging. PLoS One 15, e0230903 (2020).
doi: 10.1371/journal.pone.0230903 pubmed: 32267858 pmcid: 7141654
Jahng, G.-H., Lee, M. B., Kim, H. J., Woo, E. J. & Kwon, O. I. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current. NeuroImage 225, 117466 (2021).
doi: 10.1016/j.neuroimage.2020.117466 pubmed: 33075557
Seo, J. K. et al. Electrical tissue property imaging using MRI at DC and Larmor frequency. Inverse Prob. 28, 084002 (2012).
doi: 10.1088/0266-5611/28/8/084002
Gurler, N. & Ider, Y. Z. Gradient-based electrical conductivity imaging using MR phase. Magn. Reson. Med. 77, 137–150 (2016).
doi: 10.1002/mrm.26097 pubmed: 26762771
Tanner, J. E. Self-diffusion of water in frog muscle. Biophys. J. 28, 107–116 (1979).
doi: 10.1016/S0006-3495(79)85162-0 pubmed: 318065 pmcid: 1328613
van Gelderen, P., DesPres, D., van Zijl, P. C. M. & Moonen, C. Evaluation of restricted diffusion in cylinders phosphocreatine in rabbit leg muscle. J. Magn. Reson. Ser. B 103, 255–260 (1994).
doi: 10.1006/jmrb.1994.1038
Stanisz, G. J., Szafer, A., Wright, G. A. & Henkelman, R. M. An analytical model of restricted diffusion in bovine optic nerve. Magn. Reson. Med. 37, 103–111 (1997).
doi: 10.1002/mrm.1910370115 pubmed: 8978638
Katoch, N. et al. Conductivity tensor imaging of in vivo human brain and experimental validation using giant vesicle suspension. IEEE Trans. Med. Imaging 38, 1569–1577 (2019).
doi: 10.1109/TMI.2018.2884440 pubmed: 30507528
Chauhan, M. et al. Low-frequency conductivity tensor imaging of the human head in vivo using DT-MREIT: First study. IEEE Trans. Med. Imaging 37, 966–976. https://doi.org/10.1109/TMI.2017.2783348 (2018).
doi: 10.1109/TMI.2017.2783348 pubmed: 29610075 pmcid: 5963516
Indahlastari, A., Chauhan, M., Schwartz, B. & Sadleir, R. J. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. J. Neural Eng. 13, 066006. https://doi.org/10.1088/1741-2560/13/6/066006 (2016).
doi: 10.1088/1741-2560/13/6/066006 pubmed: 27705955 pmcid: 5361410
Antonenko, D. et al. Towards precise brain stimulation: Is electric field stimulation related to neuromodulation?. Brain Stimul. 12, P1159-1168. https://doi.org/10.1016/j.brs.2019.03.072 (2019).
doi: 10.1016/j.brs.2019.03.072
Fernandez-Corazza, M. et al. Source localization of epileptic spikes using multiple sparse priors. Clin. Neurophysiol. 132, 586–597. https://doi.org/10.1016/j.clinph.2020.10.030 (2021).
doi: 10.1016/j.clinph.2020.10.030 pubmed: 33477100
Davids, M., Guerin, B., Malzacher, M., Schad, L. R. & Wald, L. Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models. Sci. Rep. 7, 5316. https://doi.org/10.1038/s41598-017-05493-9 (2017).
doi: 10.1038/s41598-017-05493-9 pubmed: 28706244 pmcid: 5509681
Jeong, W. C. et al. Anisotropic conductivity tensor imaging of canine brain using DT-MREIT. IEEE Trans. Med. Imaging 36, 124–131. https://doi.org/10.1109/TMI.2016.2598546 (2017).
doi: 10.1109/TMI.2016.2598546 pubmed: 28055828
Gabriel, S., Lau, R. W. & Gabriel, C. The dielectric properties of biological tissues: III Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996).
doi: 10.1088/0031-9155/41/11/003 pubmed: 8938026
Sajib, S. Z. K., Chauhan, M., Kwon, O. I. & Sadleir, R. J. Magnetic-resonance-based measurement of electromagnetic fields and conductivity in vivo using single current administration - a machine learning approach. PLoS One 16, e0254690. https://doi.org/10.1371/journal.pone.0254690 (2021).
doi: 10.1371/journal.pone.0254690 pubmed: 34293014 pmcid: 8297925
Song, Y. et al. Low frequency conductivity reconstruction based on a single current injection via MREIT. Phys. Med. Biol. 65, 225016. https://doi.org/10.1088/1361-6560/abbc4d (2020).
doi: 10.1088/1361-6560/abbc4d
Saurav Z. K. et al. Electrical Properties of Tissues Quantitative Magnetic Resonance Mapping Magnetic Resonance Current Density Imaging (MR-CDI) 135–155 (Springer International Publishing Cham, 2022).
Nam, H., Park, C. & Kwon, O. I. Non-iterative conductivity reconstruction algorithm using projected current density in MREIT. Phys. Med. Biol. 53, 6947–61 (2008).
doi: 10.1088/0031-9155/53/23/019 pubmed: 19001695
Kim, H. J. et al. Conductivity imaging of canine brain using a 3 T MREIT system: Postmortem experiments. Physiol. Meas. 28, 1341 (2007).
doi: 10.1088/0967-3334/28/11/002 pubmed: 17978419
Seagar, A. D., Barber, D. C. & Brown, B. H. Theoretical limits to sensitivity and resolution in impedance imaging. Clin. Phys. Physiol. Meas. 8A, 13–31 (1987).
doi: 10.1088/0143-0815/8/4A/003
Sajib, S. Z. K., Kim, H. J., Woo, E. J. & Kwon, O. I. Regional absolute conductivity reconstruction using projected current density in MREIT. Phys. Med. Biol. 57, 5841–5859 (2012).
doi: 10.1088/0031-9155/57/18/5841 pubmed: 22951361
Minhas, A. S., Chauhan, M., Fu, F. & Sadleir, R. J. Evaluation of magnetohydrodynamic effects in magnetic resonance electrical impedance tomography at ultra-high magnetic fields. Magn. Reson. Med. 81, 2264–2276. https://doi.org/10.1002/mrm.27534 (2018).
doi: 10.1002/mrm.27534 pubmed: 30450638 pmcid: 6373455
Marino, M., Cordero-Grande, L., Mantini, D. & Ferrazzi, G. Conductivity tensor imaging of the human brain using water mapping techniques. Front. Neurosci. 15, 694645. https://doi.org/10.3389/fnins.2021.694645 (2021).
doi: 10.3389/fnins.2021.694645 pubmed: 34393709 pmcid: 8363203
Michel, E., Hernandez, D. & Lee, S. Y. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T
doi: 10.1002/mrm.26193 pubmed: 26946979
Volkov, A. G., Paula, S. & Deamer, D. W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 42, 153–160. https://doi.org/10.1016/S0302-4598(96)05097-0 (1997).
doi: 10.1016/S0302-4598(96)05097-0
Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985).
doi: 10.1152/physrev.1985.65.1.101 pubmed: 3880896
Kwon, O. I., Lee, M. B. & Jahng, G. H. High frequency conductivity decomposition by solving physically constrained underdetermined inverse problem in human brain. Sci. Rep. 13, 3273 (2023).
doi: 10.1038/s41598-023-30344-1 pubmed: 36841894 pmcid: 9968322
Ma, W., DeMonte, T., Nachman, A., Elsaid, N. M. H. & Joy, M. Experimental implementation of a new method of imaging anisotropic electric conductivities. In Proc. 35th Ann. Int. Conf. IEEE EMBS 6437–6440 (2013).
Park, C., Lee, B. & I., K. O. Analysis of recoverable current from one component of magnetic flux density in MREIT. Phys. Med. Biol.52, 11 (2007).
Sajib, S., Lee, M., Kim, H. E. J. W. & Kwon, O. I. Extracellular total electrolyte concentration imaging for electrical brain stimulation (EBS). Sci. Rep. 8, 290 (2018).
doi: 10.1038/s41598-017-18515-3 pubmed: 29321483 pmcid: 5762666
Sajib, S. Z. K., Katoch, N., Kim, H. J., Kwon, O. I. & Woo, E. J. Software toolbox for low-frequency conductivity and current density imaging using MRI. IEEE Trans. Biomed. Eng. 64, 2505–2514 (2017).
doi: 10.1109/TBME.2017.2732502 pubmed: 28767360
Schuirmann, D. J. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15, 657–680. https://doi.org/10.1007/BF01068419 (1987).
doi: 10.1007/BF01068419 pubmed: 3450848
Rogers, J. L., Howard, K. I. & Vessey, J. T. Using significance tests to evaluate equivalence between two experimental groups. Psychol. Bull. 113, 553–565. https://doi.org/10.1037/0033-2909.113.3.553 (1993).
doi: 10.1037/0033-2909.113.3.553 pubmed: 8316613
Sajib, S., Chauhan, M., Sahu, S., Boakye, E. & Sadleir, R. J. Comparison of MR-based low-frequency electrical conductivity tensor using DT-MREIT and CTI: A biological tissue phantom study. In Proceedings of 29th Annual Meeting of the International Society of Magnetic Resonance in Medicine, 3786 (2021).
Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).
doi: 10.1016/j.neuroimage.2012.03.072 pubmed: 22484410
Kaden, E., Kruggel, F. & Alexander, D. C. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–1763. https://doi.org/10.1002/mrm.25734 (2016).
doi: 10.1002/mrm.25734 pubmed: 25974332
Li, H., Nikam, R., Kandula, V., Chow, H. M. & Choudhary, A. K. Comparison of NODDI and spherical mean signal for measuring intra-neurite volume fraction. Magn. Reson. Imaging 57, 151–155 (2019).
doi: 10.1016/j.mri.2018.11.021 pubmed: 30496791
Ben-Eliezer, N., Sodickson, D. K. & Block, K. T. Rapid and accurate T
doi: 10.1002/mrm.25156 pubmed: 24648387
Kim, D., Jensen, J. H., Wu, E. X., Sheth, S. S. & Brittenham, G. M. Breathhold multiecho fast spin-echo pulse sequence for accurate R
doi: 10.1002/mrm.22047 pubmed: 19526516 pmcid: 2733943
Fatemi, Y., Danyali, H., Helfroush, M. S. & Amiri, H. Fast T
doi: 10.1002/mrm.28309 pubmed: 32430979 pmcid: 7402028
Seo, J. K. & Woo, E. J. Non-iterative harmonic B
doi: 10.1088/0266-5611/27/8/085003
Geddes, L. & Baker, L. E. The specific resistance of biological materials: A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. Comput. 5, 271–293 (1967).
doi: 10.1007/BF02474537
Mandija, S., Meliadò, E. F., Huttinga, N. R. F., Luijten, P. R. & van den Berg, C. A. T. Opening a new window on MR-based electrical properties tomography with deep learning. Sci. Rep. 9(1), 8895. https://doi.org/10.1038/s41598-019-45382-x (2019).
van Lier, A. L. H. M. W. et al. Electrical properties tomography in the human brain at 1.5, 3, and 7T: A comparison study. Magn. Reson. Med. 71(1) 354–363. https://doi.org/10.1002/mrm.v71.110.1002/mrm.24637 (2014).
Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).
doi: 10.1016/j.neuroimage.2015.10.019 pubmed: 26481672
Santini, F., Ganter, C., Ehses, P., Scheffler, K. & Bieri, O. A generic referenceless phase combination (GRPC) method: application at high and ultra-high fields. In Proceedings of the 23rd Annual Meeting of ISMRM, 3724 (2015).
Santini, F., Santin, M. D., de Sousa, P. L. & Bieri, O. Two-step generic referenceless phase combination (GRPC) for accurate phase image reconstruction from multiple receiver coils. In Proceedings of the 24th Annual Meeting of ISMRM, 4314 (2016).
Hafalir, F. S., Oran, O. F., Gurler, N. & Ider, Y. Z. Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT). IEEE Trans. Med. Imaging 33, 777–793 (2014).
doi: 10.1109/TMI.2013.2296715 pubmed: 24595349
Katscher, U., Minhas, A. S. & Katoch, N. Magnetic Resonance Electrical Properties Tomography (MREPT) 185–202 (Springer International Publishing, 2022).
Oh, T. I. et al. Noise analysis in fast magnetic resonance electrical impedance tomography (MREIT) based on spoiled multi gradient echo (SPMGE) pulse sequence. Phys. Med. Biol. 59, 4723–4738 (2014).
doi: 10.1088/0031-9155/59/16/4723 pubmed: 25082797
Sajib, S. Z. K. et al. Compensation of lead-wire magnetic field contributions in mreit experiment using image segmentation: a phantom study. In Proceedings of the 27th Annual Meeting of the International Society for Magnetic Resonance in Medicine, 5049 (2019).
Göksu, C. et al. Human in-vivo brain magnetic resonance current density imaging (MRCDI). NeuroImage https://doi.org/10.1016/j.neuroimage.2017.12.075 (2018).
doi: 10.1016/j.neuroimage.2017.12.075 pubmed: 29288869

Auteurs

S Z K Sajib (SZK)

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.

M Chauhan (M)

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.

S Sahu (S)

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.

E Boakye (E)

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.

R J Sadleir (RJ)

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA. rsadleir@asu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH