Immunogenicity and biodistribution of lipid nanoparticle formulated self-amplifying mRNA vaccines against H5 avian influenza.
Journal
NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863
Informations de publication
Date de publication:
03 Aug 2024
03 Aug 2024
Historique:
received:
05
12
2023
accepted:
17
07
2024
medline:
4
8
2024
pubmed:
4
8
2024
entrez:
3
8
2024
Statut:
epublish
Résumé
This study reports on the immunogenicity and biodistribution of H5 hemagglutinin (HA)-based self-amplifying (sa) mRNA vaccines in mice. Four sa-mRNA vaccines encoding either a secreted full-length HA, a secreted HA head domain, a secreted HA stalk domain, or a full-length membrane-anchored HA were investigated. All vaccines elicited an adaptive immune response. However, the full-length HA sa-RNA vaccines demonstrated superior performance compared to head and stalk domain vaccines. The antibody titers positively correlated with the vaccine dose. Cellular immune responses and antigen-specific IgA antibodies in the lungs were also observed. The comparison of the sa-mRNA vaccines encoding the secreted and membrane-anchored full-length HA revealed that anchoring of the HA to the membrane significantly enhanced the antibody and cellular responses. In addition to the injection site, the intramuscularly injected sa-mRNA-LNPs were also detected in the draining lymph nodes, spleen, and to a lesser extent, in the lung, kidney, liver, and heart.
Identifiants
pubmed: 39097672
doi: 10.1038/s41541-024-00932-x
pii: 10.1038/s41541-024-00932-x
doi:
Types de publication
Journal Article
Langues
eng
Pagination
138Subventions
Organisme : Bijzonder Onderzoeksfonds (Special Research Fund)
ID : BOF.BAS.2018.0028.01
Organisme : China Scholarship Council (CSC)
ID : 202107650043
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : 1172121N
Organisme : Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders)
ID : 12K0323N
Informations de copyright
© 2024. The Author(s).
Références
Villanueva-Cabezas, J. P., Coppo, M. J. C., Durr, P. A. & McVernon, J. Vaccine efficacy against Indonesian Highly Pathogenic Avian Influenza H5N1: systematic review and meta-analysis. Vaccine 35, 4859–4869 (2017).
pubmed: 28780119
doi: 10.1016/j.vaccine.2017.07.059
Chen, H. & Bu, Z. Development and application of avian influenza vaccines in China. Curr. Top. Microbiol. Immunol. 333, 153–162 (2009).
pubmed: 19768404
Kim, S. H. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses 10. https://doi.org/10.3390/v10030121 (2018).
Pittman, M. & Laddomada, A. Legislation for the control of avian influenza in the European union. Zoonoses Public Health 55, 29–36 (2008).
pubmed: 18201324
doi: 10.1111/j.1863-2378.2007.01087.x
Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
pubmed: 33301246
doi: 10.1056/NEJMoa2034577
Walsh, E. E. et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 383, 2439–2450 (2020).
pubmed: 33053279
doi: 10.1056/NEJMoa2027906
Liu, X. et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial. Lancet 398, 856–869 (2021).
pubmed: 34370971
pmcid: 8346248
doi: 10.1016/S0140-6736(21)01694-9
Valyi-Nagy, I. et al. Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. Geroscience 43, 2321–2331 (2021).
pubmed: 34633612
pmcid: 8503874
doi: 10.1007/s11357-021-00471-6
Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 e2877 (2021).
pubmed: 34852217
pmcid: 8566475
doi: 10.1016/j.immuni.2021.11.001
Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 586, 594–599 (2020).
pubmed: 32998157
doi: 10.1038/s41586-020-2814-7
Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).
pubmed: 35288714
pmcid: 8989677
doi: 10.1038/s41590-022-01163-9
Graham, M. B., Braciale, V. L. & Braciale, T. J. Influenza virus specific CD4 T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J. Exp. Med. 180, 1273–1282 (1994).
Tews, B. A. & Meyers, G. Self-Replicating RNA. Methods Mol. Biol. 1499, 15–35 (2017).
pubmed: 27987141
doi: 10.1007/978-1-4939-6481-9_2
Vogel, A. B. et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther. 26, 446–455 (2018).
pubmed: 29275847
doi: 10.1016/j.ymthe.2017.11.017
Erasmus, J. H. et al. An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 12, https://doi.org/10.1126/scitranslmed.abc9396 (2020).
Wu, N. C. & Wilson, I. A. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb. Perspect. Med. 10. https://doi.org/10.1101/cshperspect.a038778 (2020).
Zhang, L. et al. Optimal designs of an HA-based DNA vaccine against H7 subtype influenza viruses. Hum. Vaccin Immunother. 10, 1949–1958 (2014).
pubmed: 25424804
pmcid: 4186056
doi: 10.4161/hv.28795
Hekele, A. et al. Rapidly produced SAM((R)) vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2, e52 (2013).
pubmed: 26038486
pmcid: 3821287
doi: 10.1038/emi.2013.54
Saczynska, V. Influenza virus hemagglutinin as a vaccine antigen produced in bacteria. Acta Biochim. Pol. 61, 561–572 (2014).
pubmed: 25195143
doi: 10.18388/abp.2014_1878
Cornelissen, L. A. et al. A single immunization with soluble recombinant trimeric hemagglutinin protects chickens against highly pathogenic avian influenza virus H5N1. PLoS One 5, e10645 (2010).
pubmed: 20498717
pmcid: 2871037
doi: 10.1371/journal.pone.0010645
Lin, S. C. et al. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PLoS One 6, e20052 (2011).
pubmed: 21655326
pmcid: 3104987
doi: 10.1371/journal.pone.0020052
Panaampon, J. et al. A novel pathogenic mechanism of highly pathogenic avian influenza H5N1 viruses involves hemagglutinin mediated resistance to serum innate inhibitors. PLoS One 7, e36318 (2012).
pubmed: 22563489
pmcid: 3341361
doi: 10.1371/journal.pone.0036318
Pekosz, A. et al. Recombinant Trimeric HA Protein Immunogenicity of H5N1 Avian Influenza Viruses and Their Combined Use with Inactivated or Adenovirus Vaccines. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0020052 (2011).
Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015).
pubmed: 26303961
doi: 10.1126/science.aac7263
Yang, J. & Zhang, Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181 (2015).
pubmed: 25883148
pmcid: 4489253
doi: 10.1093/nar/gkv342
Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).
pubmed: 25549265
pmcid: 4428668
doi: 10.1038/nmeth.3213
Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 601, 120586 (2021).
pubmed: 33839230
pmcid: 8032477
doi: 10.1016/j.ijpharm.2021.120586
Freyn, A. W. et al. Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol. Ther. Methods Clin. Dev. 22, 84–95 (2021).
pubmed: 34485597
pmcid: 8390451
doi: 10.1016/j.omtm.2021.06.003
Vervaeke, P., Borgos, S. E., Sanders, N. N. & Combes, F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv. Drug Deliv. Rev. 184, 114236 (2022).
pubmed: 35351470
pmcid: 8957368
doi: 10.1016/j.addr.2022.114236
Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).
pubmed: 21798894
doi: 10.1126/science.1205669
Yap, K. L., Ada, G. L. & McKenzie, I. F. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273, 238–239 (1978).
pubmed: 306072
doi: 10.1038/273238a0
Schmidt, A. & Lapuente, D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 13, https://doi.org/10.3390/v13020199 (2021).
Oh, J. E. et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 6, eabj5129 (2021).
pubmed: 34890255
pmcid: 8762609
doi: 10.1126/sciimmunol.abj5129
Bliss, C. M. et al. A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol. Ther. 30, 2024–2047 (2022).
pubmed: 34999208
pmcid: 9092311
doi: 10.1016/j.ymthe.2022.01.011
Jacobsen, H. et al. Influenza Virus Hemagglutinin Stalk-Specific Antibodies in Human Serum are a Surrogate Marker for In Vivo Protection in a Serum Transfer Mouse Challenge Model. mBio 8, https://doi.org/10.1128/mBio.01463-17 (2017).
Xuan, C. et al. Structural vaccinology: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines. Protein Cell 2, 997–1005 (2011).
pubmed: 22231357
doi: 10.1007/s13238-011-1134-y
Khurana, S. et al. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines. Vaccine 29, 5657–5665 (2011).
pubmed: 21704111
pmcid: 3182405
doi: 10.1016/j.vaccine.2011.06.014
Chiu, F. F. et al. Immunological study of HA1 domain of hemagglutinin of influenza H5N1 virus. Biochem. Biophys. Res. Commun. 383, 27–31 (2009).
pubmed: 19324009
doi: 10.1016/j.bbrc.2009.03.106
Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).
pubmed: 36423275
pmcid: 10790309
doi: 10.1126/science.abm0271
Paules, C. I., Marston, H. D., Eisinger, R. W., Baltimore, D. & Fauci, A. S. The Pathway to a Universal Influenza Vaccine. Immunity 47, 599–603 (2017).
pubmed: 29045889
doi: 10.1016/j.immuni.2017.09.007
Zhong, Z. et al. Corticosteroids and cellulose purification improve, respectively, the in vivo translation and vaccination efficacy of sa-mRNAs. Mol. Ther. 29, 1370–1381 (2021).
pubmed: 33484964
pmcid: 8058483
doi: 10.1016/j.ymthe.2021.01.023
Topham, D. J. & Doherty, P. C. Clearance of an influenza A virus by CD4(+) T cells is inefficient in the absence of B cells. J. Virol. 72, 882–885 (1998).
pubmed: 9420305
pmcid: 109454
doi: 10.1128/JVI.72.1.882-885.1998
Snapper, C. M. & Paul, W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).
pubmed: 3107127
doi: 10.1126/science.3107127
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).
pubmed: 2523712
doi: 10.1146/annurev.iy.07.040189.001045
Huber, V. C. et al. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin. Vaccin. Immunol. 13, 981–990 (2006).
doi: 10.1128/CVI.00156-06
Neuberger, M. S. & Rajewsky, K. Activation of mouse complement by monoclonal mouse antibodies. Eur. J. Immunol. 11, 1012–1016 (1981).
pubmed: 7327198
doi: 10.1002/eji.1830111212
Unkeless, J. C. & Eisen, H. N. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J. Exp. Med. 142, 1520–1533 (1975).
pubmed: 1194857
doi: 10.1084/jem.142.6.1520
Hall, V. G. et al. Delayed-interval BNT162b2 mRNA COVID-19 vaccination enhances humoral immunity and induces robust T cell responses. Nat. Immunol. 23, 380–385 (2022).
pubmed: 35115679
doi: 10.1038/s41590-021-01126-6
Maruggi, G. et al. A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Mol. Ther. 30, 1897–1912 (2022).
pubmed: 34990810
pmcid: 8721936
doi: 10.1016/j.ymthe.2022.01.001
Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).
pubmed: 35969778
pmcid: 9407666
doi: 10.1073/pnas.2207841119
Guan, L. et al. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 15, https://doi.org/10.3390/v15051093 (2023).
Chen, M. W. et al. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl Acad. Sci. USA 105, 13538–13543 (2008).
pubmed: 18765801
pmcid: 2533225
doi: 10.1073/pnas.0806901105
McCafferty, S. et al. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol. Ther. 30, 2968–2983 (2022).
pubmed: 35450821
pmcid: 9020838
doi: 10.1016/j.ymthe.2022.04.014
Van Hoecke, L., Job, E. R., Saelens, X. & Roose, K. Bronchoalveolar Lavage of Murine Lungs to Analyze Inflammatory Cell Infiltration. J. Vis. Exp. https://doi.org/10.3791/55398 (2017).
Kaufmann, L. et al. An Optimized Hemagglutination Inhibition (HI) Assay to Quantify Influenza-specific Antibody Titers. J. Vis. Exp. https://doi.org/10.3791/55833 (2017).