Neuroplasticity in Parkinson's disease.

AMPA BDNF Biomarkers Dopamine NMDA Neuroplasticity Parkinson’s disease

Journal

Journal of neural transmission (Vienna, Austria : 1996)
ISSN: 1435-1463
Titre abrégé: J Neural Transm (Vienna)
Pays: Austria
ID NLM: 9702341

Informations de publication

Date de publication:
05 Aug 2024
Historique:
received: 06 07 2024
accepted: 22 07 2024
medline: 5 8 2024
pubmed: 5 8 2024
entrez: 5 8 2024
Statut: aheadofprint

Résumé

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.

Identifiants

pubmed: 39102007
doi: 10.1007/s00702-024-02813-y
pii: 10.1007/s00702-024-02813-y
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministerul Cercetării şi Inovării
ID : 1N/2023/ PN 23.16.01.02

Informations de copyright

© 2024. The Author(s).

Références

Agosta F, Gatti R, Sarasso E, Volonté MA, Canu E, Meani A, Sarro L, Copetti M, Cattrysse E, Kerckhofs E, Comi G, Falini A, Filippi M (2017) Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J Neurol 264(1):88–101. https://doi.org/10.1007/s00415-016-8309-7
doi: 10.1007/s00415-016-8309-7 pubmed: 27778161
Ahlskog JE (2011) Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77(3):288–294. https://doi.org/10.1212/WNL.0b013e318225ab66
doi: 10.1212/WNL.0b013e318225ab66 pubmed: 21768599 pmcid: 3136051
Ahlskog JE (2018) Aerobic exercise: evidence for a direct brain effect to slow parkinson disease progression. Mayo Clin Proc 93(3):360–372. https://doi.org/10.1016/j.mayocp.2017.12.015
doi: 10.1016/j.mayocp.2017.12.015 pubmed: 29502566
Albin RL, Leventhal DK (2017) The missing, the short, and the long: Levodopa responses and dopamine actions. Ann Neurol 82(1):4–19. https://doi.org/10.1002/ana.24961
doi: 10.1002/ana.24961 pubmed: 28543679 pmcid: 5526730
Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC (2018) Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul 11(5):1140–1150. https://doi.org/10.1016/j.brs.2018.05.008
doi: 10.1016/j.brs.2018.05.008 pubmed: 29779963 pmcid: 6109410
Andrzejewski ME, McKee BL, Baldwin AE, Burns L, Hernandez P (2013) The clinical relevance of neuroplasticity in corticostriatal networks during operant learning. Neurosci Biobehav Rev 37(9 Pt A):2071–2080. https://doi.org/10.1016/j.neubiorev.2013.03.019
doi: 10.1016/j.neubiorev.2013.03.019 pubmed: 23567518
Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A (2023) Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 46(7):566–580. https://doi.org/10.1016/j.tins.2023.04.005
Baglio F, Pirastru A, Bergsland N, Cazzoli M, Tavazzi E (2022) Neuroplasticity mediated by motor rehabilitation in Parkinson’s disease: a systematic review on structural and functional MRI markers. Rev Neurosci 33(2):213–226. https://doi.org/10.1515/revneuro-2021-0064
doi: 10.1515/revneuro-2021-0064 pubmed: 34461010
Bech P, Crochet S, Dard R, Ghaderi P, Liu Y, Malekzadeh M, Petersen CCH, Pulin M, Renard A, Sourmpis C (2023) Striatal dopamine signals and reward learning. Function Oxf 4(6):zquad056. https://doi.org/10.1093/function/zqad056
doi: 10.1093/function/zqad056
Belvisi D, Pellicciari R, Fabbrini G, Tinazzi M, Berardelli A, Defazio G (2020) Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: what do prospective studies suggest? Neurobiol Dis 134:104671. https://doi.org/10.1016/j.nbd.2019.104671
doi: 10.1016/j.nbd.2019.104671 pubmed: 31706021
Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346. https://doi.org/10.1159/000100803
doi: 10.1159/000100803 pubmed: 3329873
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM (2021) Exercise protects synaptic density in a rat model of Parkinson’s disease. Exp Neurol 342:113741. https://doi.org/10.1016/j.expneurol.2021.113741
doi: 10.1016/j.expneurol.2021.113741 pubmed: 33965411
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R (2024) Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 232:102548. https://doi.org/10.1016/j.pneurobio.2023
doi: 10.1016/j.pneurobio.2023 pubmed: 38040324
Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):III/1-5. https://doi.org/10.1007/s00415-002-1301-4
doi: 10.1007/s00415-002-1301-4 pubmed: 12528692
Byrne JH, Baxter DA, Buonomano DV, Raymond JL (1990) Neuronal and network determinants of simple and higher-order features of associative learning: experimental and modeling approaches. Cold Spring Harb Symp Quant Biol 55:175–186. https://doi.org/10.1101/sqb.1990.055.01.020
doi: 10.1101/sqb.1990.055.01.020 pubmed: 1983443
Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725. https://doi.org/10.1002/ana.21995
doi: 10.1002/ana.21995 pubmed: 20517933 pmcid: 2918373
Chu HY, Atherton JF, Wokosin D, Surmeier DJ, Bevan MD (2015) Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 85(2):364–376. https://doi.org/10.1016/j.neuron.2014.12.022
doi: 10.1016/j.neuron.2014.12.022 pubmed: 25578364 pmcid: 4304914
Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD (2017) Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron 95(6):1306-1318.e5. https://doi.org/10.1016/j.neuron.2017.08.038
doi: 10.1016/j.neuron.2017.08.038 pubmed: 28910619 pmcid: 5679443
Cirillo R, Duperrier S, Parekh P, Millot M, Li Q, Thiolat ML, Morelli M, Xie J, Le Bars D, Redouté J, Bezard E, Sgambato V (2024) Striatal serotonin 4 receptor is increased in experimental Parkinsonism and dyskinesia. J Parkinsons Dis 14(2):261–267. https://doi.org/10.3233/JPD-230331
doi: 10.3233/JPD-230331 pubmed: 38339940 pmcid: 10977406
Comella CL, Stebbins GT, Brown-Toms N, Goetz CG (1994) Physical therapy and Parkinson’s disease: a controlled clinical trial. Neurology 44(3 Pt 1):376–378. https://doi.org/10.1212/wnl.44.3_part_1.376
doi: 10.1212/wnl.44.3_part_1.376 pubmed: 8145901
Connor SA, Wang YT (2016) A place at the table: LTD as a mediator of memory genesis. Neuroscientist 22(4):359–371. https://doi.org/10.1177/1073858415588498
doi: 10.1177/1073858415588498 pubmed: 25993993
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M (2022) Dopaminergic modulation of primary motor cortex: from cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson’s disease. Neurobiol Dis 1(167):105674. https://doi.org/10.1016/j.nbd.2022.105674
doi: 10.1016/j.nbd.2022.105674
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
doi: 10.1016/s0896-6273(03)00568-3 pubmed: 12971891
de Sousa Fernandes MS, Ordônio TF, Santos GCJ, Santos LER, Calazans CT, Gomes DA, Santos TM (2020) Effects of physical exercise on neuroplasticity and brain function: a systematic review in human and animal studies. Neural Plast 14(2020):8856621. https://doi.org/10.1155/2020/8856621.eCollection2020
doi: 10.1155/2020/8856621.eCollection2020
Del Rey NL, García-Cabezas MÁ (2023) Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiol Dis 176:105945. https://doi.org/10.1016/j.nbd.2022.105945
doi: 10.1016/j.nbd.2022.105945 pubmed: 36481436
DeLong M, Wichmann T (2009) Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 15(Suppl (0 3)):S237–S240. https://doi.org/10.1016/S1353-8020(09)70822-3
doi: 10.1016/S1353-8020(09)70822-3 pubmed: 20082999 pmcid: 4275124
DeLong MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT (1984) Role of basal ganglia in limb movements. Hum Neurobiol 2(4):235–244
pubmed: 6715208
Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100(2):314–329. https://doi.org/10.1016/j.neuron.2018.10.018
doi: 10.1016/j.neuron.2018.10.018 pubmed: 30359599 pmcid: 6214363
Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167. https://doi.org/10.1016/j.conb.2005.03.004
doi: 10.1016/j.conb.2005.03.004 pubmed: 15831397
Duty S (2012) Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson’s disease. CNS Drugs 26(12):1017–1032. https://doi.org/10.1007/s40263-012-0016-z
doi: 10.1007/s40263-012-0016-z pubmed: 23114872
Enciu AM, Nicolescu MI, Manole CG, Mureşanu DF, Popescu LM, Popescu BO (2011) Neuroregeneration in neurodegenerative disorders. BMC Neurol 23(11):75. https://doi.org/10.1186/1471-2377-11-75
doi: 10.1186/1471-2377-11-75
Espa E, Song L, Skovgård K, Fanni S, Cenci MA (2023) Dopamine agonist cotreatment alters neuroplasticity and pharmacology of levodopa-induced dyskinesia. Mov Disord 38(3):410–422. https://doi.org/10.1002/mds.29301
doi: 10.1002/mds.29301 pubmed: 36656044 pmcid: 10114531
Fakhoury M, Eid F, El Ahmad P, Khoury R, Mezher A, El Masri D, Haddad Z, Zoghbi Y, Ghayad LM, Sleiman SF, Stephan JS (2022) Exercise and Dietary Factors Mediate Neural Plasticity Through Modulation of BDNF Signaling. Brain Plast 8(1):121–128. https://doi.org/10.3233/BPL-220140
doi: 10.3233/BPL-220140 pubmed: 36448042 pmcid: 9661351
Figueiras-Méndez R, Marín-Zarza F, Antonio Molina J, Jiménez-Jiménez FJ, Ortí-Pareja M, Magariños C, López-Pino MA, Martínez V (1999) Subthalamic nucleus stimulation improves directly levodopa induced dyskinesias in Parkinson’s disease. J Neurol Neurosurg Psychiatry 66(4):549–550. https://doi.org/10.1136/jnnp.66.4.549
doi: 10.1136/jnnp.66.4.549 pubmed: 10201440 pmcid: 1736295
Fisher BE, Wu AD, Salem GJ, Song J, Lin C-H, Yip J, Cen S, Gordon J, Jakowec M, Petzinger G (2008) The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil 89(7):1221–1229. https://doi.org/10.1016/j.apmr.2008.01.013
doi: 10.1016/j.apmr.2008.01.013 pubmed: 18534554 pmcid: 2989816
Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM (2013) Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. NeuroReport 24(10):509–514. https://doi.org/10.1097/wnr.0b013e328361dc13
doi: 10.1097/wnr.0b013e328361dc13 pubmed: 23636255
Foltynir T, Bruno V, Fox S, Kuhn AK, Lindop F, Lees AJ (2024) Medical, surgical, and physical treatments for Parkinson’s disease. Lancet 403(10423):305–324. https://doi.org/10.1016/S0140-6736(23)01429-0
doi: 10.1016/S0140-6736(23)01429-0
Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, De Koninck Y, Parent A, Parent M (2017) Striatal neurons expressing D(1) and D(2) receptors are morphologically distinct and differently affected by dopamine denervation in mice. Sci Rep 27(7):41432. https://doi.org/10.1038/srep41432
doi: 10.1038/srep41432
Gantz SC, Levitt ES, Llamosas N, Neve KA, Williams JT (2015) Depression of serotonin synaptic transmission by the dopamine precursor L-DOPA. Cell Rep 12(6):944–954. https://doi.org/10.1016/j.celrep.2015.07.005
doi: 10.1016/j.celrep.2015.07.005 pubmed: 26235617 pmcid: 4536104
Garcia Ruiz PJ, Luquin Piudo R, Martinez Castrillo JC (2022) On disease modifying and neuroprotective treatments for Parkinson’s disease: physical exercise. Front Neurol 14(13):938686. https://doi.org/10.3389/fneur.2022.938686
doi: 10.3389/fneur.2022.938686
Godau J, Herfurth M, Kattner B, Gasser T, Berg D (2010) Increased serum insulin-like growth factor 1 in early idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 81(5):536. https://doi.org/10.1136/jnnp.2009.175752
doi: 10.1136/jnnp.2009.175752 pubmed: 20176597
Gómez-Ocádiz R, Silberberg G (2023) Corticostriatal pathways for bilateral sensorimotor functions. Curr Opin Neurobiol 83:102781. https://doi.org/10.1016/j.conb.2023.102781
doi: 10.1016/j.conb.2023.102781 pubmed: 37696188
Gorodetski L, Zeira R, Lavian H, Korngreen A (2018) Long-term plasticity of glutamatergic input from the subthalamic nucleus to the entopeduncular nucleus. Eur J Neurosci 48(5):2139–2151. https://doi.org/10.1111/ejn.14105
doi: 10.1111/ejn.14105 pubmed: 30103273
Guigoni C, Aubert I, Li Q, Gurevich VV, Benovic JL, Ferry S, Mach U, Stark H, Leriche L, Håkansson K, Bioulac BH, Gross CE, Sokoloff P, Fisone G, Gurevich EV, Bloch B, Bezard E (2005) Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord 11(Suppl 1):S25–S29. https://doi.org/10.1016/j.parkreldis.2004.11.005
doi: 10.1016/j.parkreldis.2004.11.005 pubmed: 15885624
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP (2024) Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun. 6(3):fcae093. https://doi.org/10.1093/braincomms/fcae093
doi: 10.1093/braincomms/fcae093 pubmed: 38707711 pmcid: 11069120
Helf C, Kober M, Markert F, Lanto J, Overhoff L, Badstübner-Meeske K, Storch A, Fauser M (2023) Subthalamic nucleus deep brain stimulation induces nigrostriatal dopaminergic plasticity in a stable rat model of Parkinson’s disease. NeuroReport 34(10):506–511. https://doi.org/10.1097/WNR.0000000000001917
doi: 10.1097/WNR.0000000000001917 pubmed: 37270842 pmcid: 10234325
Heuts-van Raak L, Lodder J, Kessels F (1996) Late seizures following a first symptomatic brain infarct are related to large infarcts involving the posterior area around the lateral sulcus. Seizure 5(3):185–194. https://doi.org/10.1016/s1059-1311(96)80034-3
doi: 10.1016/s1059-1311(96)80034-3 pubmed: 8902919
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R (2024) Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 12(257):110036. https://doi.org/10.1016/j.neuropharm.2024
doi: 10.1016/j.neuropharm.2024
Hirsch MA, Iyer SS, Sanjak MP (2016) Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat Disord 22(Suppl 1):S78-81. https://doi.org/10.1016/j.parkreldis.2015.09.030
doi: 10.1016/j.parkreldis.2015.09.030 pubmed: 26439945
Holly EN, Galanaugh J, Fuccillo MV (2024) Local regulation of striatal dopamine: a diversity of circuit mechanisms for a diversity of behavioral functions? Curr Opin Neurobiol 85:102839. https://doi.org/10.1016/j.conb.2024.102839
doi: 10.1016/j.conb.2024.102839 pubmed: 38309106
Hortobágyi T, Vetrovsky T, Balbim GM, Silva NCBS, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Santos PCRD, Franzén E, Granacher U (2022) The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev 80:101698. https://doi.org/10.1016/j.arr.2022.101698
doi: 10.1016/j.arr.2022.101698 pubmed: 35853549
Jin X, Costa RM (2015) Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol 33:188–196. https://doi.org/10.1016/j.conb.2015.06.011
doi: 10.1016/j.conb.2015.06.011 pubmed: 26189204 pmcid: 4523429
Johansson H, Hagströmer M, Grooten WJA, Franzén E (2020) Exercise-induced neuroplasticity in Parkinson’s disease: a metasynthesis of the literature. Neural Plast 5(2020):8961493. https://doi.org/10.1155/2020/8961493
doi: 10.1155/2020/8961493
Jones EG (1994) Santiago Ramón y Cajal and the Croonian Lecture, March 1894. Trends Neurosci 17(5):190–192. https://doi.org/10.1016/0166-2236(94)90100-7
doi: 10.1016/0166-2236(94)90100-7 pubmed: 7520199
Kaagman DGM, van Wegen EEH, Cignetti N, Rothermel E, Vanbellingen T, Hirsch MA (2024) Effects and mechanisms of exercise on brain-derived neurotrophic factor (BDNF) levels and clinical outcomes in people with parkinson’s disease: a systematic review and meta-analysis. Brain Sci 14(3):194. https://doi.org/10.3390/brainsci14030194
doi: 10.3390/brainsci14030194 pubmed: 38539583 pmcid: 10968162
Kim R, Lee TL, Lee H, Ko DK, Lee JH, Shin H, Lim D, Jun JS, Byun K, Park K, Jeon B, Kang N (2023) Effects of physical exercise interventions on cognitive function in Parkinson’s disease: an updated systematic review and meta-analysis of randomized controlled trials. Parkinsonism Relat Disord 117:105908. https://doi.org/10.1016/j.parkreldis.2023.105908
doi: 10.1016/j.parkreldis.2023.105908 pubmed: 37922635
Koo JH, Cho JY, Lee UB (2017) Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson’s disease. Exp Gerontol 2017(89):20–29. https://doi.org/10.1016/j.exger.2017.01.001
doi: 10.1016/j.exger.2017.01.001
Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38(3):579–593. https://doi.org/10.1007/s10571-017-0510-4
doi: 10.1007/s10571-017-0510-4 pubmed: 28623429
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R (2022) Evidence of neuroplastic changes after transcranial magnetic, electric, and deep brain stimulation. Brain Sci 12(7):929. https://doi.org/10.3390/brainsci12070929
doi: 10.3390/brainsci12070929 pubmed: 35884734 pmcid: 9313265
Kuba K, Kumamoto E (1990) Long-term potentiations in vertebrate synapses: a variety of cascades with common subprocesses. Prog Neurobiol 34(3):197–269. https://doi.org/10.1016/0301-0082(90)90012-6
doi: 10.1016/0301-0082(90)90012-6 pubmed: 2157237
Lang AE, Lozano AM (1998) Parkinson’s disease. first of two parts. N Engl J Med 339(15):1044–1053. https://doi.org/10.1056/NEJM199810083391506
doi: 10.1056/NEJM199810083391506 pubmed: 9761807
Li J, Xu Y, Liu T, Xu Y, Zhao X, Wei J (2023) The role of exercise in maintaining mitochondrial proteostasis in Parkinson’s disease. Int J Mol Sci 24(9):7994. https://doi.org/10.3390/ijms24097994
doi: 10.3390/ijms24097994 pubmed: 37175699 pmcid: 10179072
Li C, Elabi OF, Fieblinger T, Cenci MA (2024) Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 59(6):1227–1241. https://doi.org/10.1111/ejn.16166
doi: 10.1111/ejn.16166 pubmed: 37876330
Lisman J (2017) Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci 372(1715):20160260. https://doi.org/10.1098/rstb.2016.0260
doi: 10.1098/rstb.2016.0260 pubmed: 28093558 pmcid: 5247596
Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961. https://doi.org/10.1016/j.neuropharm.2010.01.008
doi: 10.1016/j.neuropharm.2010.01.008 pubmed: 20096294 pmcid: 2849868
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA (2022) Spike-timing-dependent plasticity mediated by dopamine and its role in Parkinson’s disease pathophysiology. Front Netw Physiol 4(2):817524. https://doi.org/10.3389/fnetp.2022.817524
doi: 10.3389/fnetp.2022.817524
Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM, Mirelman A (2017) Disparate effects of training on brain activation in Parkinson disease. Neurology 89(17):1804–1810. https://doi.org/10.1212/wnl.0000000000004576
doi: 10.1212/wnl.0000000000004576 pubmed: 28954877
Marino G, Campanelli F, Natale G, De Carluccio M, Servillo F, Ferrari E, Gardoni F, Caristo ME, Picconi B, Cardinale A, Loffredo V, Crupi F, De Leonibus E, Viscomi MT, Ghiglieri V, Calabresi P (2023) Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson’s disease restoring striatal synaptic plasticity. Sci Adv 9(28):eadh1403. https://doi.org/10.1126/sciadv.adh1403
doi: 10.1126/sciadv.adh1403 pubmed: 37450585 pmcid: 10348672
McIntyre CC, Anderson RW (2016) Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation. J Neurochem 139(Suppl 1):338–345. https://doi.org/10.1111/jnc.13649
doi: 10.1111/jnc.13649 pubmed: 27273305 pmcid: 5358920
Milosevic L, Kalia SK, Hodaie M, Lozano AM, Fasano A, Popovic MR, Hutchison WD (2018) Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson’s disease. Brain 141(1):177–190. https://doi.org/10.1093/brain/awx296
doi: 10.1093/brain/awx296 pubmed: 29236966
Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 329(1253):187–204. https://doi.org/10.1098/rstb.1990.0164
doi: 10.1098/rstb.1990.0164 pubmed: 1978364
Mougeot JL, Hirsch MA, Stevens CB, Mougeot FKB (2016) Oral biomarkers in exercise-induced neuroplasticity in Parkinson’s disease. Oral Dis 22(8):745–753. https://doi.org/10.1111/odi.12463
doi: 10.1111/odi.12463 pubmed: 26878123
Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 43(2):111–117. https://doi.org/10.1016/s0168-0102(02)00027-5
doi: 10.1016/s0168-0102(02)00027-5 pubmed: 12067746
Nicoll RA, Schulman H (2023) Synaptic memory and CaMKII. Physiol Rev 103(4):2877–2925. https://doi.org/10.1152/physrev.00034.2022
Park H, Poo M-M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379
doi: 10.1038/nrn3379 pubmed: 23254191
Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo M, Kaang BK, Collingridge GL (2013) NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 369(1633):20130131. https://doi.org/10.1098/rstb.2013.0131
doi: 10.1098/rstb.2013.0131 pubmed: 24298134
Paterno A, Polsinelli G, Federico B (2024) Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson’s disease. Front Physiol 15:1352305. https://doi.org/10.3389/fphys.2024.1352305
doi: 10.3389/fphys.2024.1352305 pubmed: 38444767 pmcid: 10912511
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ (2022) The combined influences of exercise, diet and sleep on neuroplasticity. Front Psychol 26(13):831819. https://doi.org/10.3389/fpsyg.2022.831819
doi: 10.3389/fpsyg.2022.831819
Polyakova Z, Chiken S, Hatanaka N, Nambu A (2020) Cortical control of subthalamic neuronal activity through the hyperdirect and indirect pathways in monkeys. J Neurosci 40(39):7451–7463. https://doi.org/10.1523/JNEUROSCI.0772-20.2020
doi: 10.1523/JNEUROSCI.0772-20.2020 pubmed: 32847963 pmcid: 7511188
Real CC, Ferreira AF, Chaves-Kirsten GP, Torrão AS, Pires RS, Britto LR (2013) BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson’s disease. Neuroscience 237:118–129. https://doi.org/10.1016/j.neuroscience.2013.01.060
doi: 10.1016/j.neuroscience.2013.01.060 pubmed: 23396085
Rotondo R, Proietti S, Perluigi M, Padua E, Stocchi F, Fini M, Stocchi V, Volpe D, De Pandis MFD (2023) Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson’s Disease: a systematic review and meta-analysis. Ageing Res Rev 92:102089. https://doi.org/10.1016/j.arr.2023.102089
doi: 10.1016/j.arr.2023.102089 pubmed: 37844764
Ruiz-González D, Hernández-Martínez A, Valenzuela PL, Morales JS, Soriano-Maldonado A (2021) Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 128:394–405. https://doi.org/10.1016/j.neubiorev.2021.05.025
doi: 10.1016/j.neubiorev.2021.05.025 pubmed: 34087277
Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, English C et al (2019) Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 34(12):1891–1900. https://doi.org/10.1002/mds.27865
doi: 10.1002/mds.27865 pubmed: 31584222
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL (2022) Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 166:105650. https://doi.org/10.1016/j.nbd.2022.105650
doi: 10.1016/j.nbd.2022.105650 pubmed: 35139431
Schwab ME (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 11(12):799–811. https://doi.org/10.1038/nrn2936
doi: 10.1038/nrn2936 pubmed: 21045861
Sehm B, Taubert M, Conde V, Weise D, Classen J, Dukart J, Draganski B, Villringer A, Ragert P (2014) Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol Aging 35(1):232–239. https://doi.org/10.1016/j.neurobiolaging.2013.06.021
doi: 10.1016/j.neurobiolaging.2013.06.021 pubmed: 23916062
Seng C, Luo W, Földy C (2022) Circuit formation in the adult brain. Eur J Neurosci 56(3):4187–4213. https://doi.org/10.1111/ejn.15742
doi: 10.1111/ejn.15742 pubmed: 35724981 pmcid: 9546018
Serra M, Pinna A, Costa G, Usiello A, Pasqualetti M, Avallone L, Morelli M, Napolitano F (2021) Involvement of the protein ras homolog enriched in the striatum, rhes, in dopaminergic neurons’ degeneration: link to Parkinson’s disease. Int J Mol Sci 22(10):5326. https://doi.org/10.3390/ijms22105326
doi: 10.3390/ijms22105326 pubmed: 34070217 pmcid: 8158741
Shen W, Zhai S, Surmeier DJ (2022) Striatal synaptic adaptations in Parkinson’s disease. Neurobiol Dis 1(167):105686. https://doi.org/10.1016/j.nbd.2022.105686
doi: 10.1016/j.nbd.2022.105686
Silva-Batista C, de Lima-Pardini AC, Nucci MP, Coelho DB, Batista A, Piemonte MEP, Barbosa ER, Teixeira LA, Corcos DM, Amaro E Jr, Horak FB, Ugrinowitsch C (2020) A randomized, controlled trial of exercise for Parkinsonian individuals with freezing of gait. Mov Disord 35(9):1607–1617. https://doi.org/10.1002/mds.28128
doi: 10.1002/mds.28128 pubmed: 32557868 pmcid: 7722148
Soke F, Kocer B, Fidan I, Keskinoglu P, Guclu-Gunduz A (2021) Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson’s disease: A randomized controlled study. Exp Gerontol 150:111384. https://doi.org/10.1016/j.exger.2021.111384
doi: 10.1016/j.exger.2021.111384 pubmed: 33965556
Sujkowski A, Hong L, Wessells RJ, Todi SV (2022) The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 74:101543. https://doi.org/10.1016/j.arr.2021.101543
doi: 10.1016/j.arr.2021.101543 pubmed: 34923167
Sung YH, Kim SC, Hong HP, Park CY, Shin MS, Kim CJ, Seo JH, Kim DY, Kim DJ, Cho HJ (2012) Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci 91(25–26):1309–1316. https://doi.org/10.1016/j.lfs.2012.10.003
doi: 10.1016/j.lfs.2012.10.003 pubmed: 23069581
Svensson M, Lexell J, Deierborg T (2015) Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabil Neural Repair 29(6):577–589. https://doi.org/10.1177/1545968314562108
doi: 10.1177/1545968314562108 pubmed: 25527485
Szymura J, Kubica J, Wiecek M, Pera J (2020) The immunomodulary effects of systematic exercise in older adults and people with Parkinson’s disease. J Clin Med 9(1):184
doi: 10.3390/jcm9010184 pubmed: 31936624 pmcid: 7019419
Tipton CM (2014) The history of “Exercise Is Medicine” in ancient civilizations. Adv Physiol Educ 38(2):109–117. https://doi.org/10.1152/advan.00136.2013
doi: 10.1152/advan.00136.2013 pubmed: 25039081 pmcid: 4056176
Tsukita K, Sakamaki-Tsukita H, Takahashi R (2022) Long-term effect of regular physical activity and exercise habits in patients with early Parkinson disease. Neurology 98(8):e859–e871. https://doi.org/10.1212/WNL.0000000000013218 . (Epub 2022 Jan 12)
doi: 10.1212/WNL.0000000000013218 pubmed: 35022304 pmcid: 8883509
Wu Z, Ren Z, Gao R, Sun K, Sun F, Liu T, Zheng S, Wang W, Zhang G (2024) Impact of subthalamic nucleus deep brain stimulation at different frequencies on neurogenesis in a rat model of Parkinson’s disease. Heliyon 10(10):e30730. https://doi.org/10.1016/j.heliyon.2024.e30730
doi: 10.1016/j.heliyon.2024.e30730 pubmed: 38784548 pmcid: 11112288
Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H (2010) Physical activities and future risk of Parkinson disease. Neurology 75(4):341–348. https://doi.org/10.1212/WNL.0b013e3181ea1597
doi: 10.1212/WNL.0b013e3181ea1597 pubmed: 20660864 pmcid: 2918886
You Y, Chen Z, Hu WW (2024) The role of microglia heterogeneity in synaptic plasticity and brain disorders: Will sequencing shed light on the discovery of new therapeutic targets? Pharmacol Ther 255:108606. https://doi.org/10.1016/j.pharmthera.2024
doi: 10.1016/j.pharmthera.2024 pubmed: 38346477
Yu L, Almeida QJ, Silva AF, He L (2023) Editorial: exercise-induced neuroplasticity in neurodegeneration diseases. Front Neurosci 29(17):1296291. https://doi.org/10.3389/fnins.2023.1296291
doi: 10.3389/fnins.2023.1296291
Zoladz JA, Majerczak J, Zeligowska E, Mencel J, Jaskolski A, Jaskolska A, Marusiak J (2014) Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson’s disease patients. J Physiol Pharmacol 65(3):441–448
pubmed: 24930517

Auteurs

Bogdan Ovidiu Popescu (BO)

Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania. bogdan.popescu@umfcd.ro.
Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania. bogdan.popescu@umfcd.ro.

Lucia Batzu (L)

Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.
Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.

Pedro J Garcia Ruiz (PJG)

Department of Neurology, Fundacion Jimenez Diaz, Madrid, Spain.

Delia Tulbă (D)

Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.

Elena Moro (E)

Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.

Patrick Santens (P)

Department of Neurology, University Hospital Ghent, Ghent, Belgium.
Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

Classifications MeSH