Functional genetics reveals the contribution of delta opioid receptor to type 2 diabetes and beta-cell function.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
05 Aug 2024
Historique:
received: 23 01 2024
accepted: 29 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 5 8 2024
Statut: epublish

Résumé

Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.

Identifiants

pubmed: 39103322
doi: 10.1038/s41467-024-51004-6
pii: 10.1038/s41467-024-51004-6
doi:

Substances chimiques

Receptors, Opioid, delta 0
OPRD1 protein, human 0
Insulin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6627

Informations de copyright

© 2024. The Author(s).

Références

Gourgari, E., Wilhelm, E. E., Hassanzadeh, H., Aroda, V. R. & Shoulson, I. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data. J. Diab. Complications 31, 1719–1727 (2017).
doi: 10.1016/j.jdiacomp.2017.08.005
Bonnefond, A. & Froguel, P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 21, 357–368 (2015).
pubmed: 25640731 doi: 10.1016/j.cmet.2014.12.020
El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).
pubmed: 23529041 doi: 10.1038/nrendo.2013.57
Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
pubmed: 25673413 pmcid: 4382211 doi: 10.1038/nature14177
Ndiaye, F. K. et al. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Mol. Metab. 6, 459–470 (2017).
pubmed: 28580277 pmcid: 5444093 doi: 10.1016/j.molmet.2017.03.011
Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).
pubmed: 16885549 doi: 10.1056/NEJMoa055068
Kühnen, P. et al. Proopiomelanocortin deficiency treated with a Melanocortin-4 receptor agonist. N. Engl. J. Med. 375, 240–246 (2016).
pubmed: 27468060 doi: 10.1056/NEJMoa1512693
Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).
pubmed: 27959715 doi: 10.1056/NEJMoa1609243
Sriram, K. & Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharm. 93, 251–258 (2018).
doi: 10.1124/mol.117.111062
Pathan, H. & Williams, J. Basic opioid pharmacology: an update. Br. J. Pain. 6, 11–16 (2012).
pubmed: 26516461 pmcid: 4590096 doi: 10.1177/2049463712438493
Najafipour, H. & Beik, A. The impact of opium consumption on blood glucose, serum lipids and blood pressure, and related mechanisms. Front Physiol. 7, 436 (2016).
pubmed: 27790151 pmcid: 5061814 doi: 10.3389/fphys.2016.00436
Elman, I. et al. Metabolic and addiction Indices in patients on opioid agonist medication-assisted treatment: a comparison of buprenorphine and methadone. Sci. Rep. 10, 5617 (2020).
pubmed: 32221389 pmcid: 7101411 doi: 10.1038/s41598-020-62556-0
Vuong, C., Van Uum, S. H. M., O’Dell, L. E., Lutfy, K. & Friedman, T. C. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr. Rev. 31, 98–132 (2010).
pubmed: 19903933 doi: 10.1210/er.2009-0009
Leslie, R. D., Pyke, D. A. & Stubbs, W. A. Sensitivity to enkephalin as a cause of non-insulin dependent diabetes. Lancet 1, 341–343 (1979).
pubmed: 84999 doi: 10.1016/S0140-6736(79)92887-3
Karam, G. A. et al. Effects of opium addiction on some serum factors in addicts with non-insulin-dependent diabetes mellitus. Addict. Biol. 9, 53–58 (2004).
pubmed: 15203439 doi: 10.1080/13556210410001674095
Gozashti, M. H., Yazdi, F., Salajegheh, P., Dehesh, M. M. & Divsalar, K. Fasting blood glucose and insulin level in opium addict versus non-addict individuals. Addict. Health 7, 54–59 (2015).
pubmed: 26322211 pmcid: 4530194
Ceriello, A. et al. Impaired glucose metabolism in heroin and methadone users. Horm. Metab. Res 19, 430–433 (1987).
pubmed: 3319862 doi: 10.1055/s-2007-1011844
Peng, J., Sarkar, S. & Chang, S. L. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 124, 223–228 (2012).
pubmed: 22356890 pmcid: 3366045 doi: 10.1016/j.drugalcdep.2012.01.013
Bonnefond, A. et al. Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat. Metab. 2, 1126–1134 (2020).
pubmed: 33046911 doi: 10.1038/s42255-020-00294-3
Raynor, K. et al. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol. Pharm. 45, 330–334 (1994).
Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).
pubmed: 31118516 pmcid: 6699738 doi: 10.1038/s41586-019-1231-2
American Diabetes Association. 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 43, S89–S97 (2020).
Rachdi, L. et al. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Sci. Rep. 10, 13469 (2020).
pubmed: 32778664 pmcid: 7417582 doi: 10.1038/s41598-020-69758-6
Bone, R. N. et al. A computational approach for defining a signature of β-Cell Golgi stress in diabetes. Diabetes 69, 2364–2376 (2020).
pubmed: 32820009 pmcid: 7576569 doi: 10.2337/db20-0636
Kolic, J. et al. Differential effects of Voclosporin and Tacrolimus on insulin secretion from human islets. Endocrinology 161, bqaa162 (2020).
pubmed: 32894758 pmcid: 7567406 doi: 10.1210/endocr/bqaa162
Gharavy, S. N. M. et al. Sexually Dimorphic Roles for the Type 2 Diabetes-Associated C2cd4b Gene in Murine Glucose Homeostasis. http://biorxiv.org/lookup/doi/10.1101/2020.05.18.099200 (2020) https://doi.org/10.1101/2020.05.18.099200 .
Berthault, C., Staels, W. & Scharfmann, R. Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells. Mol. Metab. 42, 101060 (2020).
pubmed: 32763423 pmcid: 7498953 doi: 10.1016/j.molmet.2020.101060
Nica, A. C. et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23, 1554–1562 (2013).
pubmed: 23716500 pmcid: 3759730 doi: 10.1101/gr.150706.112
Marselli, L. et al. Persistent or transient human β cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with Type 2 diabetes. Cell Rep. 33, 108466 (2020).
pubmed: 33264613 doi: 10.1016/j.celrep.2020.108466
Alonso, L. et al. TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep. 37, 109807 (2021).
pubmed: 34644572 pmcid: 8864863 doi: 10.1016/j.celrep.2021.109807
Fadista, J. et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl Acad. Sci. 111, 13924–13929 (2014).
pubmed: 25201977 pmcid: 4183326 doi: 10.1073/pnas.1402665111
Szczerbinska, I. et al. Large-scale functional genomics screen to identify modulators of human β-cell insulin secretion. Biomedicines 10, 103 (2022).
pubmed: 35052782 pmcid: 8773179 doi: 10.3390/biomedicines10010103
Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012).
pubmed: 22596164 pmcid: 3523198 doi: 10.1038/nature11111
Borsodi, A. et al. Opioid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019, https://journals.ed.ac.uk/gtopdb-cite/article/view/3202 (2019).
Rosenbaum, T., Sánchez-Soto, M. C. & Hiriart, M. Nerve growth factor increases insulin secretion and barium current in pancreatic β-Cells. Diabetes 50, 1755–1762 (2001).
pubmed: 11473035 doi: 10.2337/diabetes.50.8.1755
Chen, Y. L., Law, P. Y. & Loh, H. H. Inhibition of akt/protein kinase B signaling by naltrindole in small cell lung cancer cells. Cancer Res 64, 8723–8730 (2004).
pubmed: 15574783 doi: 10.1158/0008-5472.CAN-03-3091
Carlin, M. G., Dean, J. R. & Ames, J. M. Opium alkaloids in harvested and thermally processed Poppy seeds. Front Chem. 8, 737 (2020).
pubmed: 33195013 pmcid: 7482649 doi: 10.3389/fchem.2020.00737
Fairbanks, C. A. & Peterson, C. D. The opioid receptor: emergence through millennia of pharmaceutical sciences. Front Pain. Res 4, 960389 (2023).
doi: 10.3389/fpain.2023.960389
Giugliano, D. et al. Inhibitory effect of enkephalin on insulin secretion in healthy subjects and in non insulin-dependent diabetic subjects. Metabolism 36, 286–289 (1987).
pubmed: 3547015 doi: 10.1016/0026-0495(87)90190-9
Giugliano, D. et al. Beta-endorphin and islet hormone release in humans: evidence for interference with cAMP. Am. J. Physiol. 257, E361–E366 (1989).
pubmed: 2551176
Feldman, M., Kiser, R. S., Unger, R. H. & Li, C. H. Beta-endorphin and the endocrine pancreas. Studies in healthy and diabetic human beings. N. Engl. J. Med. 308, 349–353 (1983).
pubmed: 6296674 doi: 10.1056/NEJM198302173080701
Czyzyk, T. A. et al. Mice lacking δ-opioid receptors resist the development of diet-induced obesity. FASEB J. 26, 3483–3492 (2012).
pubmed: 22593549 pmcid: 3405260 doi: 10.1096/fj.12-208041
Brown, K. M. O. et al. Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol. Psychiatry 61, 367–373 (2007).
pubmed: 16806108 doi: 10.1016/j.biopsych.2006.04.007
Wang, K. et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol. Psychiatry 16, 949–959 (2011).
pubmed: 21079607 doi: 10.1038/mp.2010.107
Zhang, H. et al. Functional impact of a single-nucleotide polymorphism in the OPRD1 promoter region. J. Hum. Genet. 55, 278–284 (2010).
pubmed: 20300121 pmcid: 2876206 doi: 10.1038/jhg.2010.22
Karamitri, A. et al. Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci. Signal 11, eaan6622 (2018).
pubmed: 30154102 doi: 10.1126/scisignal.aan6622
Gao, W. et al. Human GLP1R variants affecting GLP1R cell surface expression are associated with impaired glucose control and increased adiposity. Nat. Metab. 5, 1673–1684 (2023).
pubmed: 37709961 doi: 10.1038/s42255-023-00889-6
Dietis, N., Rowbotham, D. J. & Lambert, D. G. Opioid receptor subtypes: fact or artifact? Br. J. Anaesth. 107, 8–18 (2011).
pubmed: 21613279 doi: 10.1093/bja/aer115
Balkau, B. An epidemiologic survey from a network of French Health Examination Centres, (D.E.S.I.R.): epidemiologic data on the insulin resistance syndrome]. Rev. Epidemiol. Sante Publique 44, 373–375 (1996).
pubmed: 8927780
Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).
pubmed: 17293876 doi: 10.1038/nature05616
Meyre, D. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 41, 157–159 (2009).
pubmed: 19151714 doi: 10.1038/ng.301
Romon, M. et al. Relationships between physical activity and plasma leptin levels in healthy children: the Fleurbaix-Laventie Ville Santé II Study. Int. J. Obes. Relat. Metab. Disord. 28, 1227–1232 (2004).
pubmed: 15314633 doi: 10.1038/sj.ijo.0802725
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 42, S13–S28 (2019).
Baron, M. et al. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nat. Med. 25, 1733–1738 (2019).
pubmed: 31700171 pmcid: 6858878 doi: 10.1038/s41591-019-0622-0
Sun, J., Zheng, Y. & Hsu, L. A unified mixed-effects model for rare-variant association in sequencing studies. Genet. Epidemiol. 37, 334–344 (2013).
pubmed: 23483651 pmcid: 3740585 doi: 10.1002/gepi.21717
Bugliani, M. et al. Modulation of autophagy influences the function and survival of human pancreatic beta cells under endoplasmic reticulum stress conditions and in type 2 diabetes. Front Endocrinol. (Lausanne) 10, 52 (2019).
pubmed: 30863363 doi: 10.3389/fendo.2019.00052
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313 pmcid: 6447622 doi: 10.1038/s41467-019-09234-6
Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121, 3589–3597 (2011).
pubmed: 21865645 pmcid: 3163974 doi: 10.1172/JCI58447

Auteurs

Sarah Meulebrouck (S)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Judith Merrheim (J)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Gurvan Queniat (G)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Cyril Bourouh (C)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Mehdi Derhourhi (M)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Mathilde Boissel (M)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Xiaoyan Yi (X)

ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.

Alaa Badreddine (A)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Raphaël Boutry (R)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Audrey Leloire (A)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Bénédicte Toussaint (B)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Souhila Amanzougarene (S)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Emmanuel Vaillant (E)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Emmanuelle Durand (E)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Hélène Loiselle (H)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Marlène Huyvaert (M)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Aurélie Dechaume (A)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Victoria Scherrer (V)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Piero Marchetti (P)

Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Beverley Balkau (B)

Paris-Saclay University, Paris-Sud University, UVSQ, Center for Research in Epidemiology and Population Health, Inserm U1018 Clinical Epidemiology, Villejuif, France.

Guillaume Charpentier (G)

CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France.

Sylvia Franc (S)

CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France.
Department of Diabetes, Sud-Francilien Hospital, Paris-Sud University, Corbeil-Essonnes, France.

Michel Marre (M)

Institut Necker-Enfants Malades, Inserm, Université de Paris, Paris, France.
Clinique Ambroise Paré, Neuilly-sur-Seine, France.

Ronan Roussel (R)

Institut Necker-Enfants Malades, Inserm, Université de Paris, Paris, France.
Department of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France.

Raphaël Scharfmann (R)

Institut Cochin, Inserm U1016, CNRS UMR8104, Université de Paris, Paris, France.

Miriam Cnop (M)

ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.
Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.

Mickaël Canouil (M)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Morgane Baron (M)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France.

Philippe Froguel (P)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France. p.froguel@imperial.ac.uk.
Department of Metabolism, Imperial College London, London, UK. p.froguel@imperial.ac.uk.

Amélie Bonnefond (A)

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France. amelie.bonnefond@cnrs.fr.
Department of Metabolism, Imperial College London, London, UK. amelie.bonnefond@cnrs.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH