Discerning computational, in vitro and in vivo investigations of self-assembling empagliflozin polymeric micelles in type-2 diabetes.

Diabetes mellitus Empagliflozin Molecular docking Molecular dynamic simulation Nanocargoes Pharmacodynamics Pharmacokinetics Polymeric micelles Quantum chemical calculation TPGS

Journal

Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061

Informations de publication

Date de publication:
05 Aug 2024
Historique:
accepted: 24 06 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 5 8 2024
Statut: aheadofprint

Résumé

Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption. In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed. The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model. EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.

Sections du résumé

BACKGROUND BACKGROUND
Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption.
METHODOLOGY METHODS
In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed.
RESULTS RESULTS
The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model.
CONCLUSION CONCLUSIONS
EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.

Identifiants

pubmed: 39103594
doi: 10.1007/s13346-024-01658-y
pii: 10.1007/s13346-024-01658-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Controlled Release Society.

Références

Mbwete GW, Kilonzo KG, Shao ER, et al. Suboptimal blood pressure control, associated factors, and choice of antihypertensive drugs among type 2 diabetic patients at KCMC. Tanzania J Diabetes Res. 2020;2020:9.
World Health and Organization. Diabetes. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes . Accessed 10 Dec 2021. 12.
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045. 9th edition Results from the International Diabetes Federation Diabetes Atlas. 157. Diab Res Clin Pract. 2019;10:13.
Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013;12(2):153–75.
pubmed: 23241069 doi: 10.1517/14740338.2013.752813
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94.
pubmed: 21527736 doi: 10.1152/physrev.00055.2009
Hediger MA, Rhoads DB. Molecular physiology of sodium– glucose cotransporters. Physiol Rev. 1994;74:993–1026.
pubmed: 7938229 doi: 10.1152/physrev.1994.74.4.993
Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium– glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32:515–31.
pubmed: 21606218 doi: 10.1210/er.2010-0029
Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14:83–90.
pubmed: 21985634 doi: 10.1111/j.1463-1326.2011.01517.x
Hammad RW, Sanad RA, Abdelmalak NS, Latif R. Cubosomal functionalized block copolymer platform for dual delivery of linagliptin and empagliflozin: Recent advances in synergistic strategies for maximizing control of high-risk type II diabetes. Drug Deliv Transl Res. 2023. https://doi.org/10.1007/s13346-023-01423-7 .
doi: 10.1007/s13346-023-01423-7 pubmed: 37805954 pmcid: 10810935
Ramazanzadeh N, Mahmoodi N. Drug delivery system for controlled release of empagliflozin from alginate-chitosan nanocarrier system. Turk J Chem. 2022;46(3):805–13.
pubmed: 37720607 pmcid: 10503968 doi: 10.55730/1300-0527.3370
Mahmoodi N, Ramazanzadeh N. Synthesis and Characterization of Alginate-Chitosan Nanocarrier System for Empagliflozin Delivery. Iran J Chem Chem Eng. 2022;41(4):1107–18.
Khan T, Nabi B, Rehman S, Akhtar M, Ali J, Najmi AK. Quality by Design Approach to Formulate Empagliflozin-Loaded Chitosan Nanoparticles In Vitro, In Vivo and Pharmacokinetic Evaluation of Anti-Diabetic Drugs. Nano. 2021;16(13):2150149.
doi: 10.1142/S1793292021501496
Podichety N, Jyothi P, Pradeep K, Maddali RK. Formulation and Evaluation of Empagliflozin drug loaded Polymeric Nanoparticles for the Treatment of type 2 Diabetes Mellitus (T2DM). Curr Trends Biotechnol Pharm. 2022;16(3):308–15.
Krishna KV, Chandra KB. Development, characterization and evaluation of empagliflozin spherical agglomerates using spherical agglomeration technique. J Pharm Innov. 2018;7(3):202–7.
Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76:147–58.
pubmed: 20600891 doi: 10.1016/j.ejpb.2010.06.007
Wang J, Mongayt D, Torchilin VP. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target. 2005;13(1):73–80.
pubmed: 15848957 pmcid: 1634737 doi: 10.1080/10611860400011935
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714–29.
pubmed: 20542144 doi: 10.1016/j.nano.2010.05.005
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.
pubmed: 33151290 doi: 10.1093/nar/gkaa971
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.
pubmed: 19399780 pmcid: 2760638 doi: 10.1002/jcc.21256
Joshi B, Bhandare V, Patel P, Sharma A, Patel R, Krishnamurthy R. Molecular modelling studies and identification of novel phytochemical inhibitor of DLL3. J Biomol Struct Dyn. 2023;41(7):3089–109.
pubmed: 35220906 doi: 10.1080/07391102.2022.2045224
Abraham M, Murtola T, Schulz R, Páll S, Smith J, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X. 2015;1–2:19–25.
Du S, Zhang K, Yao X, Du J. Investigation on the fungicide resistance mechanism against Botrytis cinerea β-tubulin inhibitor zoxamide by computational study. J Biomol Struct Dyn. 2020;38(14):4304–12.
pubmed: 31543000 doi: 10.1080/07391102.2019.1671230
Hakeem S, Singh I, Sharma P, Uppal A, Khajuria Y, Verma V, Uversky V, Chandra R. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J Biomol Struct Dyn. 2019;37(16):4361–73.
pubmed: 30466358 doi: 10.1080/07391102.2018.1548979
Zhou X, Xu Z, Li A, Zhang Z, Xu S. Double-sides sticking mechanism of vinblastine interacting with α, β-tubulin to get activity against cancer cells. J Biomol Struct Dyn. 2018;37(15):4080–91.
pubmed: 30451089 doi: 10.1080/07391102.2018.1539412
Kumbhar B, Bhandare V, Panda D, Kunwar A. Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach. J Biomol Struct Dyn. 2019;38(2):426–38.
pubmed: 30831055 doi: 10.1080/07391102.2019.1577174
Tripathi S, Srivastava G, Singh A, Prakasham A, Negi A, Sharma A. Insight into microtubule destabilization mechanism of 3, 4, 5-trimethoxyphenyl indanone derivatives using molecular dynamics simulation and conformational modes analysis. J Comput Aided Mol Des. 2018;32(4):559–72.
pubmed: 29516382 doi: 10.1007/s10822-018-0109-y
Bhandare V, Kumbhar B, Kunwar A. Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes. Sci Rep. 2019;9(1):1–12.
doi: 10.1038/s41598-019-47249-7
Joshi B, Bhandare V, Vankawala M, Patel P, Patel R, Vyas B, Krishnamurty R. Friedelin, a novel inhibitor of CYP17A1 in prostate cancer from Cassia tora. J Biomol Structure Dyn. 2023;41(9):9695–720.
doi: 10.1080/07391102.2022.2145497
Frisch MJ. gaussian09. http://www.gaussian.com/ . 2009.
Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Poly Sci. 2010;35:1128–49.
doi: 10.1016/j.progpolymsci.2010.06.003
Muthu MS, Kulkarni SA, Liu Y, Feng SS. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine (Lond). 2012;7(3):353–64.
pubmed: 22329606 doi: 10.2217/nnm.11.111
Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4–5):445–53.
pubmed: 15890503 doi: 10.1016/j.ejps.2005.04.003
Patil S, Bharambe S, Kshirsagar S. Development and Validation of RP- HPLC Method for Estimation of Empagliflozin and its Stability Studies In vitro Simulated Gastric and Intestinal Fluids. Asian J Pharm Anal. 2019;9(3):156–60.
doi: 10.5958/2231-5675.2019.00028.0
Abdelbary G, Makhlouf A. Adoption of polymeric micelles to enhance the oral bioavailability of dexibuprofen: formulation, in-vitro evaluation and in-vivo pharmacokinetic study in healthy human volunteers. Pharm Dev Technol. 2014;19(6):717–27.
pubmed: 23937590 doi: 10.3109/10837450.2013.823994
Shah P, Dubey P, Vyas B, Kaul A, Mishra AK, Chopra D, Patel P. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study. Artif Cells Nanomed Biotechnol. 2021;49(1):511–22.
pubmed: 34151674 doi: 10.1080/21691401.2021.1939709
Mangrulkar S, Shah P, Navnage S, Mazumdar P, Chaple D. Phytophospholipid Complex of Caffeic Acid: Development, In vitro Characterization, and In Vivo Investigation of Antihyperlipidemic and Hepatoprotective Action in Rats. AAPS PharmSciTech. 2021;22(1):28.
pubmed: 33404939 doi: 10.1208/s12249-020-01887-7
Munyendo WL, Zhang Z, Abbad S, Waddad AY, Lv H, Baraza LD, Zhou J. Micelles of TPGS modified apigenin phospholipid complex for oral administration: preparation, in vitro and in vivo evaluation. J Biomed Nanotechnol. 2013;9(12):2034–47.
pubmed: 24266259 doi: 10.1166/jbn.2013.1704
Kanade R, Boche M, Pokharkar V. Self-Assembling Raloxifene Loaded Mixed Micelles: Formulation Optimization, In Vitro Cytotoxicity and In Vivo Pharmacokinetics. AAPS PharmSciTech. 2018;19(3):1105–15.
pubmed: 29181706 doi: 10.1208/s12249-017-0919-6
Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core-shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int J Pharm. 2013;452(1–2):300–10.
pubmed: 23684658 doi: 10.1016/j.ijpharm.2013.04.084
Borderwala K, Rathod S, Yadav S, Vyas B, Shah P. Eudragit S-100 Surface Engineered Nanostructured Lipid Carriers for Colon Targeting of 5-Fluorouracil: Optimization and In Vitro and In Vivo Characterization. AAPS PharmSciTech. 2021;22(6):216.
pubmed: 34386888 doi: 10.1208/s12249-021-02099-3
Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of Solid Dispersion and Melt Adsorption Technique: Improved In Vitro and In Vivo Performance of Ticagrelor Tablets. AAPS PharmSciTech. 2021;22(8):257.
pubmed: 34676463 doi: 10.1208/s12249-021-02138-z
Shah P, Desai H, Vyas B, Lalan M, Kulkarni M. Quality-by-Design-Based Development of Rivaroxaban-Loaded Liquisolid Compact Tablets with Improved Biopharmaceutical Attributes. AAPS PharmSciTech. 2023;24(7):176.
pubmed: 37639081 doi: 10.1208/s12249-023-02635-3
Zuccari G, Alfei S, Zorzoli A, Marimpietri D, Turrini F, Baldassari S, Marchitto L, Caviglioli G. Increased Water-Solubility and Maintained Antioxidant Power of Resveratrol by Its Encapsulation in Vitamin E TPGS Micelles: A Potential Nutritional Supplement for Chronic Liver Disease. Pharmaceutics. 2021;13(8):1128.
pubmed: 34452090 pmcid: 8400607 doi: 10.3390/pharmaceutics13081128
Lalan M, Shah P, Kadam R, Patel H. Amalgam of Ternary Solid Dispersion and P-gp Efflux Inhibition in Development of Colon-targeted Tablets of Rifaximin. J Rep Pharm Sci. 2022;11(2):222–35.
doi: 10.4103/jrptps.JRPTPS_21_22
Kenechukwu FC, Nnamani DO, Duhu JC, Nmesirionye BU, Momoh MA, Akpa PA, Attama AA. Potential enhancement of metformin hydrochloride in solidified reverse micellar solution-based PEGylated lipid nanoparticles targeting therapeutic efficacy in diabetes treatment. Heliyon. 2022;8(3):e09099.
pubmed: 35309393 pmcid: 8927942 doi: 10.1016/j.heliyon.2022.e09099
Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P, Bertina RM, Osanto S. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost. 2010;8(2):315–23.
pubmed: 19840362 doi: 10.1111/j.1538-7836.2009.03654.x
Sonali Agrawal P, Singh RP, Rajesh CV, Singh S, Vijayakumar MR, Pandey BL, Muthu MS. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Delivery. 2016;23(5):1788–98.
Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res. 2021;11(3):1166–85.
pubmed: 32804301 doi: 10.1007/s13346-020-00839-9
Chen LZ, Jungnik A, Mao Y, Philip E, Sharp D, Unseld A, Seman L, Woerle HJ, Macha S. Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers. Xenobiotica. 2015;45(6):520–9.
pubmed: 25547626 doi: 10.3109/00498254.2014.999141
Donepudi S, Achanta S. Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma. Int J Appl Pharm. 2018;10(3):56–61.
doi: 10.22159/ijap.2018v10i3.24662
Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Kaunas). 2017;53(6):365–74.
pubmed: 29548636 doi: 10.1016/j.medici.2018.02.001
Li X, Xia X, Zhang J, Adu-Frimpong M, Shen X, Yin W, He Q, Rong W, Shi F, Cao X, Ji H. Preparation, Physical Characterization, Pharmacokinetics and Anti-Hyperglycemic Activity of Esculetin-Loaded Mixed Micelles. J Pharm Sci. 2023;112(1):148–57.
pubmed: 35780820 doi: 10.1016/j.xphs.2022.06.022
Lebecque S, Crowet JM, Nasir MN, Deleu M, Lins L. Molecular dynamics study of micelles properties according to their size. J Mol Graph Model. 2017;72:6–15.
pubmed: 27992815 doi: 10.1016/j.jmgm.2016.12.007
Bernabeu E, Gonzalez L, Cagel M, Gergic EP, Moretton MA, Chiappetta DA. Novel Soluplus
pubmed: 26780253 doi: 10.1016/j.colsurfb.2016.01.003
Mehta SK, Jindal N. Mixed micelles of Lecithin-Tyloxapol as pharmaceutical nanocarriers for anti-tubercular drug delivery. Colloids Surf B Biointerfaces. 2013;110:419–25.
pubmed: 23751420 doi: 10.1016/j.colsurfb.2013.05.015
Ismailos G, Reppas C, Macheras P. Enhancement of cyclosporin A solubility by d-alphatocopheryl-polyethylene-glycol-1000 succinate (TPGS). Eur J Pharm Sci. 1994;1(5):269–71.
doi: 10.1016/0928-0987(94)90021-3
Yu L, Bridgers A, Polli J, Vickers A, Long S, Roy A, Winnike R, Coffin M. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability1. Pharm Res. 1999;16:1812–7.
pubmed: 10644067 doi: 10.1023/A:1018939006780
Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, Leng D, Wang Y, Sun Y, Jing Y, Wang S, He Z. Star-shape Copolymer of Lysine-linked Di-tocopherol Polyethylene Glycol 2000 Succinate for Doxorubicin Delivery with Reversal of Multidrug Resistance. Biomaterials. 2012;33:6877–88.
pubmed: 22770799 doi: 10.1016/j.biomaterials.2012.06.019
Zhao LY, Du JC, Duan YW, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B. 2012;97:101–8.
doi: 10.1016/j.colsurfb.2012.04.017
Hao T, Chen D, Liu K, Qi Y, Tian Y, Sun P, Liu Y, Li Z. Micelles of d-α-Tocopheryl Polyethylene Glycol 2000 Succinate (TPGS 2K) for Doxorubicin Delivery with Reversal of Multidrug Resistance. ACS Appl Mater Interfaces. 2015;7(32):18064–75.
pubmed: 26214761 doi: 10.1021/acsami.5b04995
Dolatabadi JE, Hamishehkar H, Eskandani M, Valizadeh H. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids Surf, B. 2014;117:21–8.
doi: 10.1016/j.colsurfb.2014.01.055
Ayubi M, Karimi M, Abdpour S, Rostamizadeh K, Parsa M, Zamani M, Saedi A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater Sci Eng, C. 2019;104:109810.
doi: 10.1016/j.msec.2019.109810
Thanitwatthanasak S, Sagis LMC, Chitprasert P. Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: Mixture-design optimization, micellization, and solubilization behavior. J Mol Liq. 2019;274:223–32.
doi: 10.1016/j.molliq.2018.10.089
Patil KS, Hajare AA, Manjappa AS, More HN, Disouza JI. Design, development, in silico and in vitro characterization of Docetaxel-loaded TPGS/Pluronic F 108 mixed micelles for improved cancer treatment. J Drug Deliv Sci Technol. 2021;65:102685.
doi: 10.1016/j.jddst.2021.102685
Zhao J, Xu Y, Wang C, Ding Y, Chen M, Wang Y, Peng J, Li L, Lv L. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm. 2017;43(7):1197–204.
pubmed: 28300426 doi: 10.1080/03639045.2017.1304956
Saurí J, Millán D, Suñé-Negre JM, Colom H, Ticó JR, Miñarro M, Pérez-Lozano P, García-Montoya E. Quality by Design approach to understand the physicochemical phenomena involved in controlled release of captopril SR matrix tablets. Int J Pharm. 2014;477(1–2):431–41.
pubmed: 25445523 doi: 10.1016/j.ijpharm.2014.10.050
Rathod S, Joshi A, Ray D, Aswal VK, Verma G, Bahadur P, Tiwari S. Changes in aggregation properties of TPGS micelles in the presence of sodium cholate. Colloids Surf, A. 2021;610:125938.
doi: 10.1016/j.colsurfa.2020.125938
Fan Z, Wu J, Fang X, Sha X. A new function of Vitamin E-TPGS in the intestinal lymphatic transport of lipophilic drugs: enhancing the secretion of chylomicrons. Int J Pharm. 2013;445(1–2):141–7.
pubmed: 23396256 doi: 10.1016/j.ijpharm.2013.01.070
Ossai EC, Madueke AC, Amadi BE, Ogugofor MO, Momoh AM, Okpala CO, Anosike CA, Njoku OU. Potential enhancement of metformin hydrochloride in lipid vesicles targeting therapeutic efficacy in diabetic treatment. Int J Mol Sci. 2021;22(6):2852.
pubmed: 33799652 pmcid: 8001634 doi: 10.3390/ijms22062852

Auteurs

Priti Wagh (P)

Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India.

Shivani Savaliya (S)

Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India.

Bhrugesh Joshi (B)

C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India.

Bhavin Vyas (B)

Department of Pharmacology, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Bardoli, Gujarat, 394350, India.

Ketan Kuperkar (K)

Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, Gujarat, 395007, India.

Manisha Lalan (M)

Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, Gujarat, 391760, India.

Pranav Shah (P)

Department of Pharmaceutics, Maliba Pharmacy College, Uka Tarsadia University, Bardoli-Mahuva Road,At & Po, Tarsadi, Bardoli, Gujarat, 394350, India. pranav.shah@utu.ac.in.

Classifications MeSH