Widening global variability in grassland biomass since the 1980s.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
05 Aug 2024
05 Aug 2024
Historique:
received:
05
12
2023
accepted:
09
07
2024
medline:
6
8
2024
pubmed:
6
8
2024
entrez:
5
8
2024
Statut:
aheadofprint
Résumé
Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Identifiants
pubmed: 39103674
doi: 10.1038/s41559-024-02500-x
pii: 10.1038/s41559-024-02500-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
pubmed: 12791990
doi: 10.1126/science.1082750
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
pubmed: 16177786
doi: 10.1038/nature03972
Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).
pubmed: 20724633
doi: 10.1126/science.1192666
Zhu et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
doi: 10.1038/nclimate3004
Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
pubmed: 21551030
doi: 10.1126/science.1204531
Tylianakis, J. M. et al. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
pubmed: 19062363
doi: 10.1111/j.1461-0248.2008.01250.x
Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
doi: 10.1038/nclimate2533
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
doi: 10.1038/s41558-019-0688-1
Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
pubmed: 32963240
pmcid: 7509805
doi: 10.1038/s41467-020-18479-5
Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150 (2016).
doi: 10.1007/s00382-015-2636-8
Antar, M. et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021).
doi: 10.1016/j.rser.2020.110691
Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).
pubmed: 23733940
pmcid: 3690849
doi: 10.1073/pnas.1211349110
Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep. 6, 26958 (2016).
pubmed: 27243565
pmcid: 4886642
doi: 10.1038/srep26958
Miles, V. V. & Esau, I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. 11, 115002 (2016).
doi: 10.1088/1748-9326/11/11/115002
Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).
pubmed: 35332280
doi: 10.1038/s41559-022-01702-5
Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta‐analysis. New Phytol. 177, 706–714 (2008).
pubmed: 18042198
doi: 10.1111/j.1469-8137.2007.02290.x
Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).
doi: 10.1111/geb.12517
Borer, E. T. & Stevens, C. J. Nitrogen deposition and climate: an integrated synthesis. Trends Ecol. Evol. 6, 541–552 (2022).
doi: 10.1016/j.tree.2022.02.013
Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214, 41–47 (2017).
pubmed: 28001290
doi: 10.1111/nph.14381
Teng, M. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 714, 136691 (2020).
pubmed: 31978773
doi: 10.1016/j.scitotenv.2020.136691
Zani, D. et al. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).
pubmed: 33243884
doi: 10.1126/science.abd8911
Luo, Y. et al. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Glob. Change Biol. 26, 4379–4400 (2020).
doi: 10.1111/gcb.15138
Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).
pubmed: 16428292
pmcid: 1360515
doi: 10.1073/pnas.0503198103
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 106, 849–864 (2015).
doi: 10.1093/aob/mcv169
Olofsson, J. et al. Herbivores inhibit climate‐driven shrub expansion on the tundra. Glob. Change Biol. 15, 2681–2693 (2009).
doi: 10.1111/j.1365-2486.2009.01935.x
Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).
pubmed: 36423285
doi: 10.1126/science.abq4062
Yahdjian, L. et al. Why coordinated distributed experiments should go global. BioScience 71, 918–927 (2021).
doi: 10.1093/biosci/biab033
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
doi: 10.1111/2041-210X.12125
White, R. P., Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).
Axelrod, D. I. Rise of the grassland biome, central North America. Bot. Rev. 51, 163–201 (1985).
doi: 10.1007/BF02861083
Sala, O. E. et al. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).
doi: 10.2307/1943158
Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).
pubmed: 11161201
doi: 10.1126/science.291.5503.481
Gilbert, B. et al. Climate and local environment structure asynchrony and the stability of primary production in grasslands. Glob. Ecol. Biogeogr. 7, 1177–1188 (2020).
doi: 10.1111/geb.13094
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
pubmed: 32246091
pmcid: 7125108
doi: 10.1038/s41597-020-0453-3
Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cy. 33, 100–107 (2019).
doi: 10.1029/2018GB005990
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
pubmed: 33020598
doi: 10.1038/s41559-020-01316-9
Heisler-White, J. L., Knapp, A. K. & Kelly, E. F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158, 129–140 (2008).
pubmed: 18670792
doi: 10.1007/s00442-008-1116-9
Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).
doi: 10.3390/rs6031783
Orndahl, K. M., Macander, M. J., Berner, L. T. & Goetz, S. J. Plant functional type aboveground biomass change within Alaska and northwest Canada mapped using a 35-year satellite time series from 1985 to 2020. Environ. Res. Lett. 17, 115010 (2022).
doi: 10.1088/1748-9326/ac9d50
Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K. & Herrero, M. Climate change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 24, 1382–1393 (2018).
doi: 10.1111/gcb.13995
Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO
doi: 10.1111/gcb.13705
MacDougall, A. S. et al. Comparison of the distribution and phenology of Arctic mountain plants between the early 20th and 21st centuries. Glob. Change Biol. 27, 5070–5083 (2021).
doi: 10.1111/gcb.15767
Möhl, P., von Büren, R. S. & Hiltbrunner, E. Growth of alpine grassland will start and stop earlier under climate warming. Nat. Commun. 13, 7398 (2022).
pubmed: 36456572
pmcid: 9715633
doi: 10.1038/s41467-022-35194-5
Friedman, A. R. et al. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013).
doi: 10.1175/JCLI-D-12-00525.1
MacDougall, A. S., Wilson, S. D. & Bakker, J. D. Climatic variability alters the outcome of long‐term community assembly. J. Ecol. 96, 346–354 (2008).
doi: 10.1111/j.1365-2745.2007.01333.x
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
pubmed: 26760203
doi: 10.1038/nature16524
Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).
pubmed: 29603733
doi: 10.1002/ecy.2175
Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).
pubmed: 37147282
pmcid: 10163230
doi: 10.1038/s41467-023-37194-5
Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).
pubmed: 26173623
doi: 10.1038/ncomms8710
Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
pubmed: 24670649
doi: 10.1038/nature13144
Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).
pubmed: 33247130
pmcid: 7695826
doi: 10.1038/s41467-020-19870-y
Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
doi: 10.1016/j.eja.2012.12.001
Eisfelder, C. et al. Above-ground biomass estimation based on NPP time-series—a novel approach for biomass estimation in semi-arid Kazakhstan. Ecol. Indic. 72, 13–22 (2017).
doi: 10.1016/j.ecolind.2016.07.042
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).
doi: 10.1038/nclimate2941
Zeng, X. et al. The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Glob. Change Biol. 28, 6823–6833 (2022).
doi: 10.1111/gcb.16403
Clay, D. E. et al. Does the conversion of grasslands to row crop in semi-arid areas threaten global food supplies? Glob. Food Secur. 3, 22–30 (2014).
doi: 10.1016/j.gfs.2013.12.002
Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).
doi: 10.1088/1748-9326/ab7395
Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).
pubmed: 12167857
doi: 10.1038/nature00910
Cleland, E. E. et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems 7, 1466–1477 (2019).
doi: 10.1007/s10021-019-00350-4
Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579 (1997).
doi: 10.1038/41550
Chen, M. et al. Assessing precipitation, evapotranspiration, and NDVI as controls of US Great Plains plant production. Ecosphere 10, e02889 (2019).
doi: 10.1002/ecs2.2889
Jiang, Z. et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101, 366–378 (2006).
doi: 10.1016/j.rse.2006.01.003
Rocchini, D., Ricotta, C. & Chiarucci, A. Using satellite imagery to assess plant species richness: the role of multispectral systems. Appl. Veg. Sci. 10, 325–331 (2007).
doi: 10.1111/j.1654-109X.2007.tb00431.x
Kong, L. et al. Natural capital investments in China undermined by reclamation for cropland. Nat. Ecol. Evol. 7, 1771–1777 (2023).
Goldewijk, K. K. Estimating global land use change over the past 300 years: the HYDE database. Glob. Biogeochem. Cycles 15, 417–433 (2001).
doi: 10.1029/1999GB001232
Lehmann, C. E. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).
pubmed: 24482480
doi: 10.1126/science.1247355
Firn, J. et al. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecol. Lett. 14, 274–281 (2011).
pubmed: 21281419
doi: 10.1111/j.1461-0248.2010.01584.x
Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8, 7973–7981 (2008).
pubmed: 27873970
pmcid: 3791001
doi: 10.3390/s8127973
Salinas-Castillo, W. E. & Paredes-Hernández, C. U. Horizontal and vertical accuracy of Google Earth®: comment on ‘Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA’ by S.C. Benker, R.P. Langford and T.L. Pavlis. Geocarto Int. 29, 625–627 (2014).
doi: 10.1080/10106049.2013.821176
Landsat Collection 1. United States Geological Survey (USGS) https://www.usgs.gov/landsat-missions/landsat-collection-1 (2023).
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
doi: 10.1016/S0034-4257(02)00096-2
Young, A. T. Rayleigh scattering. Appl. Opt. 20, 533–535 (1981).
pubmed: 20309152
doi: 10.1364/AO.20.000533
R Core Team. R: A language and environment for statistical computing; https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
doi: 10.1111/j.2041-210X.2009.00001.x
Gelman, A. arm: Data analysis using regression and multilevel/hierarchical models; http://cran.r-project.org/web/packages/arm (2011).
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multi-model inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
pubmed: 21272107
doi: 10.1111/j.1420-9101.2010.02210.x
Seabloom, E. W. et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol. Lett. 24, 2100–2112 (2021).
pubmed: 34240557
doi: 10.1111/ele.13838