Widening global variability in grassland biomass since the 1980s.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
05 Aug 2024
Historique:
received: 05 12 2023
accepted: 09 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 5 8 2024
Statut: aheadofprint

Résumé

Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.

Identifiants

pubmed: 39103674
doi: 10.1038/s41559-024-02500-x
pii: 10.1038/s41559-024-02500-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
pubmed: 12791990 doi: 10.1126/science.1082750
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
pubmed: 16177786 doi: 10.1038/nature03972
Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).
pubmed: 20724633 doi: 10.1126/science.1192666
Zhu et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
doi: 10.1038/nclimate3004
Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).
doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
pubmed: 21551030 doi: 10.1126/science.1204531
Tylianakis, J. M. et al. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
pubmed: 19062363 doi: 10.1111/j.1461-0248.2008.01250.x
Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
doi: 10.1038/nclimate2533
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
doi: 10.1038/s41558-019-0688-1
Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
pubmed: 32963240 pmcid: 7509805 doi: 10.1038/s41467-020-18479-5
Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150 (2016).
doi: 10.1007/s00382-015-2636-8
Antar, M. et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 139, 110691 (2021).
doi: 10.1016/j.rser.2020.110691
Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).
pubmed: 23733940 pmcid: 3690849 doi: 10.1073/pnas.1211349110
Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep. 6, 26958 (2016).
pubmed: 27243565 pmcid: 4886642 doi: 10.1038/srep26958
Miles, V. V. & Esau, I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. 11, 115002 (2016).
doi: 10.1088/1748-9326/11/11/115002
Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).
pubmed: 35332280 doi: 10.1038/s41559-022-01702-5
Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta‐analysis. New Phytol. 177, 706–714 (2008).
pubmed: 18042198 doi: 10.1111/j.1469-8137.2007.02290.x
Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).
doi: 10.1111/geb.12517
Borer, E. T. & Stevens, C. J. Nitrogen deposition and climate: an integrated synthesis. Trends Ecol. Evol. 6, 541–552 (2022).
doi: 10.1016/j.tree.2022.02.013
Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation–productivity relationships: implications for climate change. New Phytol. 214, 41–47 (2017).
pubmed: 28001290 doi: 10.1111/nph.14381
Teng, M. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. 714, 136691 (2020).
pubmed: 31978773 doi: 10.1016/j.scitotenv.2020.136691
Zani, D. et al. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).
pubmed: 33243884 doi: 10.1126/science.abd8911
Luo, Y. et al. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Glob. Change Biol. 26, 4379–4400 (2020).
doi: 10.1111/gcb.15138
Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).
pubmed: 16428292 pmcid: 1360515 doi: 10.1073/pnas.0503198103
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 106, 849–864 (2015).
doi: 10.1093/aob/mcv169
Olofsson, J. et al. Herbivores inhibit climate‐driven shrub expansion on the tundra. Glob. Change Biol. 15, 2681–2693 (2009).
doi: 10.1111/j.1365-2486.2009.01935.x
Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022).
pubmed: 36423285 doi: 10.1126/science.abq4062
Yahdjian, L. et al. Why coordinated distributed experiments should go global. BioScience 71, 918–927 (2021).
doi: 10.1093/biosci/biab033
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
doi: 10.1111/2041-210X.12125
White, R. P., Murray, S., Rohweder, M., Prince, S. D. & Thompson, K. M. Grassland Ecosystems (World Resources Institute, 2000).
Axelrod, D. I. Rise of the grassland biome, central North America. Bot. Rev. 51, 163–201 (1985).
doi: 10.1007/BF02861083
Sala, O. E. et al. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).
doi: 10.2307/1943158
Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).
pubmed: 11161201 doi: 10.1126/science.291.5503.481
Gilbert, B. et al. Climate and local environment structure asynchrony and the stability of primary production in grasslands. Glob. Ecol. Biogeogr. 7, 1177–1188 (2020).
doi: 10.1111/geb.13094
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
pubmed: 32246091 pmcid: 7125108 doi: 10.1038/s41597-020-0453-3
Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cy. 33, 100–107 (2019).
doi: 10.1029/2018GB005990
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
pubmed: 33020598 doi: 10.1038/s41559-020-01316-9
Heisler-White, J. L., Knapp, A. K. & Kelly, E. F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158, 129–140 (2008).
pubmed: 18670792 doi: 10.1007/s00442-008-1116-9
Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).
doi: 10.3390/rs6031783
Orndahl, K. M., Macander, M. J., Berner, L. T. & Goetz, S. J. Plant functional type aboveground biomass change within Alaska and northwest Canada mapped using a 35-year satellite time series from 1985 to 2020. Environ. Res. Lett. 17, 115010 (2022).
doi: 10.1088/1748-9326/ac9d50
Boone, R. B., Conant, R. T., Sircely, J., Thornton, P. K. & Herrero, M. Climate change impacts on selected global rangeland ecosystem services. Glob. Change Biol. 24, 1382–1393 (2018).
doi: 10.1111/gcb.13995
Andresen, L. C. et al. Biomass responses in a temperate European grassland through 17 years of elevated CO
doi: 10.1111/gcb.13705
MacDougall, A. S. et al. Comparison of the distribution and phenology of Arctic mountain plants between the early 20th and 21st centuries. Glob. Change Biol. 27, 5070–5083 (2021).
doi: 10.1111/gcb.15767
Möhl, P., von Büren, R. S. & Hiltbrunner, E. Growth of alpine grassland will start and stop earlier under climate warming. Nat. Commun. 13, 7398 (2022).
pubmed: 36456572 pmcid: 9715633 doi: 10.1038/s41467-022-35194-5
Friedman, A. R. et al. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013).
doi: 10.1175/JCLI-D-12-00525.1
MacDougall, A. S., Wilson, S. D. & Bakker, J. D. Climatic variability alters the outcome of long‐term community assembly. J. Ecol. 96, 346–354 (2008).
doi: 10.1111/j.1365-2745.2007.01333.x
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
pubmed: 26760203 doi: 10.1038/nature16524
Anderson, T. M. et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology 99, 822–831 (2018).
pubmed: 29603733 doi: 10.1002/ecy.2175
Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).
pubmed: 37147282 pmcid: 10163230 doi: 10.1038/s41467-023-37194-5
Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).
pubmed: 26173623 doi: 10.1038/ncomms8710
Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).
pubmed: 24670649 doi: 10.1038/nature13144
Borer, E. T. et al. Nutrients cause grassland biomass to outpace herbivory. Nat. Commun. 11, 6036 (2020).
pubmed: 33247130 pmcid: 7695826 doi: 10.1038/s41467-020-19870-y
Delegido, J. et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46, 42–52 (2013).
doi: 10.1016/j.eja.2012.12.001
Eisfelder, C. et al. Above-ground biomass estimation based on NPP time-series—a novel approach for biomass estimation in semi-arid Kazakhstan. Ecol. Indic. 72, 13–22 (2017).
doi: 10.1016/j.ecolind.2016.07.042
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).
doi: 10.1038/nclimate2941
Zeng, X. et al. The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Glob. Change Biol. 28, 6823–6833 (2022).
doi: 10.1111/gcb.16403
Clay, D. E. et al. Does the conversion of grasslands to row crop in semi-arid areas threaten global food supplies? Glob. Food Secur. 3, 22–30 (2014).
doi: 10.1016/j.gfs.2013.12.002
Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).
doi: 10.1088/1748-9326/ab7395
Jackson, R. B., Banner, J. L., Jobbágy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).
pubmed: 12167857 doi: 10.1038/nature00910
Cleland, E. E. et al. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems 7, 1466–1477 (2019).
doi: 10.1007/s10021-019-00350-4
Hungate, B. A. et al. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388, 576–579 (1997).
doi: 10.1038/41550
Chen, M. et al. Assessing precipitation, evapotranspiration, and NDVI as controls of US Great Plains plant production. Ecosphere 10, e02889 (2019).
doi: 10.1002/ecs2.2889
Jiang, Z. et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101, 366–378 (2006).
doi: 10.1016/j.rse.2006.01.003
Rocchini, D., Ricotta, C. & Chiarucci, A. Using satellite imagery to assess plant species richness: the role of multispectral systems. Appl. Veg. Sci. 10, 325–331 (2007).
doi: 10.1111/j.1654-109X.2007.tb00431.x
Kong, L. et al. Natural capital investments in China undermined by reclamation for cropland. Nat. Ecol. Evol. 7, 1771–1777 (2023).
Goldewijk, K. K. Estimating global land use change over the past 300 years: the HYDE database. Glob. Biogeochem. Cycles 15, 417–433 (2001).
doi: 10.1029/1999GB001232
Lehmann, C. E. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).
pubmed: 24482480 doi: 10.1126/science.1247355
Firn, J. et al. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecol. Lett. 14, 274–281 (2011).
pubmed: 21281419 doi: 10.1111/j.1461-0248.2010.01584.x
Potere, D. Horizontal positional accuracy of Google Earth’s high-resolution imagery archive. Sensors 8, 7973–7981 (2008).
pubmed: 27873970 pmcid: 3791001 doi: 10.3390/s8127973
Salinas-Castillo, W. E. & Paredes-Hernández, C. U. Horizontal and vertical accuracy of Google Earth®: comment on ‘Positional accuracy of the Google Earth terrain model derived from stratigraphic unconformities in the Big Bend region, Texas, USA’ by S.C. Benker, R.P. Langford and T.L. Pavlis. Geocarto Int. 29, 625–627 (2014).
doi: 10.1080/10106049.2013.821176
Landsat Collection 1. United States Geological Survey (USGS) https://www.usgs.gov/landsat-missions/landsat-collection-1 (2023).
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
doi: 10.1016/S0034-4257(02)00096-2
Young, A. T. Rayleigh scattering. Appl. Opt. 20, 533–535 (1981).
pubmed: 20309152 doi: 10.1364/AO.20.000533
R Core Team. R: A language and environment for statistical computing; https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
doi: 10.1111/j.2041-210X.2009.00001.x
Gelman, A. arm: Data analysis using regression and multilevel/hierarchical models; http://cran.r-project.org/web/packages/arm (2011).
Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multi-model inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
pubmed: 21272107 doi: 10.1111/j.1420-9101.2010.02210.x
Seabloom, E. W. et al. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecol. Lett. 24, 2100–2112 (2021).
pubmed: 34240557 doi: 10.1111/ele.13838

Auteurs

Andrew S MacDougall (AS)

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada. asm@uoguelph.ca.
Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden. asm@uoguelph.ca.

Ellen Esch (E)

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.

Qingqing Chen (Q)

Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China.

Oliver Carroll (O)

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.

Colin Bonner (C)

Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.

Timothy Ohlert (T)

Department of Biology, University of New Mexico, Albuquerque, NM, USA.

Matthias Siewert (M)

Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.

John Sulik (J)

Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada.

Anna Schweiger (A)

Land Resources and Environmetal Sciences, Montana State University, Bozeman, MT, USA.

Elizabeth T Borer (ET)

Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA.

Dilip Naidu (D)

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.

Sumanta Bagchi (S)

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.

Yann Hautier (Y)

Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.

Peter Wilfahrt (P)

Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA.

Keith Larson (K)

Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.

Johan Olofsson (J)

Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.

Elsa Cleland (E)

Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA.

Ranjan Muthukrishnan (R)

Department of Biology, Boston University, Boston, MA, USA.

Lydia O'Halloran (L)

Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, SC, USA.

Juan Alberti (J)

Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina.

T Michael Anderson (TM)

Department of Biology, Wake Forest University, Winston-Salem, NC, USA.

Carlos A Arnillas (CA)

Department of Physical and Environmental Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada.

Jonathan D Bakker (JD)

School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA.

Isabel C Barrio (IC)

Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavik, Iceland.

Lori Biederman (L)

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.

Elizabeth H Boughton (EH)

Archbold Biological Station, Venus, FL, USA.

Lars A Brudvig (LA)

Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA.

Martin Bruschetti (M)

Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina.

Yvonne Buckley (Y)

Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.

Miguel N Bugalho (MN)

Centre for Applied Ecology, School of Agriculture, University of Lisbon, Lisbon, Portugal.

Marc W Cadotte (MW)

Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada.

Maria C Caldeira (MC)

Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.

Jane A Catford (JA)

Department of Geography, King's College London, London, UK.

Carla D'Antonio (C)

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.

Kendi Davies (K)

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.

Pedro Daleo (P)

Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina.

Christopher R Dickman (CR)

School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.

Ian Donohue (I)

Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.

Mary Ellyn DuPre (ME)

MPG Ranch, Missoula, MT, USA.

Kenneth Elgersma (K)

University of Northern Iowa, Cedar Falls, IA, USA.

Nico Eisenhauer (N)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Institute of Biology, Leipzig University, Leipzig, Germany.

Anu Eskelinen (A)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
Department of Ecology and Genetics, University of Oulu, Oulu, Finland.

Catalina Estrada (C)

Department of Life Sciences, Imperial College London, Ascot, UK.

Philip A Fay (PA)

USDA-ARS Grassland Soil, and Water Research Laboratory, Temple, TX, USA.

Yanhao Feng (Y)

College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.

Daniel S Gruner (DS)

Department of Entomology, University of Maryland, College Park, MD, USA.

Nicole Hagenah (N)

Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa.

Sylvia Haider (S)

Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany.

W Stanley Harpole (WS)

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Erika Hersch-Green (E)

Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.

Anke Jentsch (A)

Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.

Kevin Kirkman (K)

School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa.

Johannes M H Knops (JMH)

Department of Health and Environmental Sciences, Jiatong-Liverpool University, Suzhou, China.

Lauri Laanisto (L)

Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia.

Lucíola S Lannes (LS)

Department of Biology and Animal Sciences, Sao Paulo State University UNESP, Ilha Solteira, Brazil.

Ramesh Laungani (R)

Department of Environmental Science and Policy, Marist College, Poughkeepsie, NY, USA.

Ariuntsetseg Lkhagva (A)

Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia.

Petr Macek (P)

Institute of Hydrobiology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic.

Jason P Martina (JP)

Department of Biology, Texas State University, San Marcos, TX, USA.

Rebecca L McCulley (RL)

Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.

Brett Melbourne (B)

Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.

Rachel Mitchell (R)

School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA.

Joslin L Moore (JL)

Arthur Rylah Institute for Environment Research, Department of Energy Environment and Climate Action, Melbourne, Victoria, Australia.
School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Victoria, Australia.

John W Morgan (JW)

Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia.

Taofeek O Muraina (TO)

Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria.
Department of Biology, Texas State University, San Marcos, TX, USA.

Yujie Niu (Y)

Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou, China.

Meelis Pärtel (M)

Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.

Pablo L Peri (PL)

INTA-UNPA-CONICET, Universidad Nacional de la Patagonia, Rìo Gallegos, Argentina.

Sally A Power (SA)

Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.

Jodi N Price (JN)

Gulbali Institute, Charles Sturt University, Albury, New South Wales, Australia.

Suzanne M Prober (SM)

CSIRO Environment, Canberra, Australian Capital Territory, Australia.

Zhengwei Ren (Z)

College of Ecology, Lanzhou University, Lanzhou, China.

Anita C Risch (AC)

Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland.

Nicholas G Smith (NG)

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.

Grégory Sonnier (G)

Archbold Biological Station, Venus, FL, USA.

Rachel J Standish (RJ)

Murdoch University, Perth, Western Australia, Australia.

Carly J Stevens (CJ)

Lancaster Environment Centre, Lancaster University, Lancaster, UK.

Michelle Tedder (M)

Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.

Pedro Tognetti (P)

IFEVA Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.

G F Ciska Veen (GFC)

Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.

Risto Virtanen (R)

Department of Ecology and Genetics, University of Oulu, Oulu, Finland.

Glenda M Wardle (GM)

School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.

Elizabeth Waring (E)

Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA.

Amelia A Wolf (AA)

Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.

Laura Yahdjian (L)

IFEVA Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.

Eric W Seabloom (EW)

Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA.

Classifications MeSH