Medial orientation of the trochlear groove is a strong indicator of high-grade trochlear dysplasia.

magnetic resonance imaging objective patellar instability trochlear dysplasia trochlear groove trochlear spur

Journal

Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
ISSN: 1433-7347
Titre abrégé: Knee Surg Sports Traumatol Arthrosc
Pays: Germany
ID NLM: 9314730

Informations de publication

Date de publication:
06 Aug 2024
Historique:
revised: 27 07 2024
received: 10 06 2024
accepted: 28 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 6 8 2024
Statut: aheadofprint

Résumé

The objective is to evaluate the orientation of the trochlear groove in patients with objective patellar instability (OPI) compared to a control group. The hypothesis is that the trochlear groove angle (TGA) is correlated with the severity of the trochlear dysplasia. From 2019 to 2023, magnetic resonance imaging of 82 knees with OPI were compared with 82 control knees. TGA quantified the angle between the femoral anatomical axis and the trochlear groove. The intraclass correlation coefficient for TGA was evaluated. Central spur in the sagittal plane (CSSP) and cranial trochlear orientation (CTO) angle were also measured. TGA, CSSP and CTO were compared between the two groups. A TGA subgroup analysis separating the OPI group into low-grade (CSSP < 5 mm or negative CTO) and high-grade dysplasia (CSSP ≥ 5 mm or positive CTO) was also performed. A significant difference (p < 0.001) was found between the TGA of the OPI group (mean [SD], 11.3 [3.7]°) and the control group (4.2 [2.5]°). TGA for patients with high-grade dysplasia (11.9 [3.8]°) was significantly higher than patients with low-grade dysplasia (9.6 [3.9]°). Patients with OPI have a TGA of 11°, compared to the control group, which exhibits a TGA of 4°. The femoral mechanical axis can be considered an appropriate threshold for separating these two groups. Furthermore, TGA is correlated with the severity of dysplasia. Case-control study. Level III.

Identifiants

pubmed: 39105459
doi: 10.1002/ksa.12418
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : None

Informations de copyright

© 2024 European Society of Sports Traumatology, Knee Surgery and Arthroscopy.

Références

Ambra, L.F., Galvão, P.H.S.A.F., Mameri, E.S., Farr, J. & Gomoll, A.H. (2021) Femoral trochlear geometry in patients with trochlear dysplasia using MRI oblique trochlear view. The Journal of Knee Surgery, 34(7), 699–704. Available from: https://doi.org/10.1055/s-0039-1700839
Barink, M., van de Groes, S., Verdonschot, N. & de Waal Malefijt, M. (2003) The trochlea is bilinear and oriented medially. Clinical Orthopaedics & Related Research, 411, 288–295. Available from: https://doi.org/10.1097/01.blo.0000069892.31220.26
Biedert, R.M. & Bachmann, M. (2009) Anterior–posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surgery, Sports Traumatology, Arthroscopy, 17(10), 1225–1230. Available from: https://doi.org/10.1007/s00167-009-0824-y
Chen, J., Ye, Z., Wu, C., Zhang, X., Zhao, J. & Xie, G. (2023) Sulcus depth, congruence angle, Wiberg index, TT‐TG distance, and CDI are strong predictors of recurrent patellar dislocation. Knee Surgery, Sports Traumatology, Arthroscopy, 31(7), 2906–2916. Available from: https://doi.org/10.1007/s00167-022-07245-3
Dejour, D.H. (2013) The patellofemoral joint and its historical roots: the Lyon School of Knee Surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 21(7), 1482–1494. Available from: https://doi.org/10.1007/s00167-012-2331-9
Dejour, D.H. & Deroche, É. (2022) Trochleoplasty: Indications in patellar dislocation with high‐grade dysplasia. Orthopaedics & Traumatology: Surgery & Research, 108(1, Supplement), 103160. Available from: https://doi.org/10.1016/j.otsr.2021.103160
Dejour, D.H., Mesnard, G. & Giovannetti de Sanctis, E. (2021) Updated treatment guidelines for patellar instability: “un menu à la carte”. Journal of Experimental Orthopaedics, 8(1), 109. Available from: https://doi.org/10.1186/s40634-021-00430-2
Dejour, D., Ntagiopoulos, P.G. & Saffarini, M. (2014) Evidence of trochlear dysplasia in femoral component designs. Knee Surgery, Sports Traumatology, Arthroscopy, 22(11), 2599–2607. Available from: https://doi.org/10.1007/s00167-012-2268-z
Dejour, H., Walch, G., Nove‐Josserand, L. & Guier, C. (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surgery, Sports Traumatology, Arthroscopy, 2(1), 19–26. Available from: https://doi.org/10.1007/BF01552649
Dong, C., Zhao, C., Li, M., Fan, C., Feng, X., Piao, K. et al. (2021) Accuracy of tibial tuberosity‐trochlear groove distance and tibial tuberosity‐posterior cruciate ligament distance in terms of the severity of trochlear dysplasia. Journal of Orthopaedic Surgery and Research, 16(1), 383. Available from: https://doi.org/10.1186/s13018-021-02527-x
Giovannetti de Sanctis, E. & Dejour, D.H. (2023) Sulcus deepening trochleoplasty. In: Sanchis‐Alfonso, V. Anterior knee pain and patellar instability. Cham: Springer International Publishing, pp. 491–501.
Giovannetti de Sanctis, E., Toanen, C., Guarino, A., Pineda, T., Deroche, E. & Dejour, D.H. (2024) The role of the most cranial trochlear orientation in patellar maltracking to better characterise trochlear morphology. Knee Surgery, Sports Traumatology, Arthroscopy. In press. Available from: https://doi.org/10.1002/ksa.12314
Glard, Y., Jouve, J.‐L., Garron, E., Adalian, P., Tardieu, C. & Bollini, G. (2005) Anatomic study of femoral patellar groove in fetus. Journal of Pediatric Orthopedics, 25(3), 305–308.
Hall, M.J. & Mandalia, V.I. (2016) Tibial tubercle osteotomy for patello‐femoral joint disorders. Knee Surgery, Sports Traumatology, Arthroscopy, 24(3), 855–861. Available from: https://doi.org/10.1007/s00167-014-3388-4
Hodel, S., Torrez, C., Hoch, A., Fürnstahl, P., Vlachopoulos, L. & Fucentese, S.F. (2023) Increased femoral curvature and trochlea flexion in high‐grade patellofemoral dysplastic knees. Knee Surgery, Sports Traumatology, Arthroscopy, 31(4), 1361–1369. Available from: https://doi.org/10.1007/s00167-022-07080-6
Iranpour, F., Merican, A.M., Baena, F.R.Y., Cobb, J.P. & Amis, A.A. (2010) Patellofemoral joint kinematics: the circular path of the patella around the trochlear axis. Journal of Orthopaedic Research, 28(5), 589–594. Available from: https://doi.org/10.1002/jor.21051
Kong, L., Kang, H., Niu, Y., Hao, K., Fan, C. & Wang, F. (2023) Patients with trochlear dysplasia have dysplastic medial femoral epiphyseal plates. Knee Surgery, Sports Traumatology, Arthroscopy, 31(11), 4951–4960. Available from: https://doi.org/10.1007/s00167-023-07545-2
Nelitz, M., Lippacher, S., Reichel, H. & Dornacher, D. (2014) Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surgery, Sports Traumatology, Arthroscopy, 22(1), 120–127. Available from: https://doi.org/10.1007/s00167-012-2321-y
Parikh, S.N., Rajdev, N. & Sun, Q. (2018) The growth of trochlear dysplasia during adolescence. Journal of Pediatric Orthopaedics, 38(6), e318–e324. Available from: https://doi.org/10.1097/BPO.0000000000001168
Rosner, B.A. (2006) Fundamentals of biostatistics. California: Thomson‐Brooks/Cole Belmont.
Saffarini, M., Ntagiopoulos, P.G., Demey, G., Le Negaret, B. & Dejour, D.H. (2014) Evidence of trochlear dysplasia in patellofemoral arthroplasty designs. Knee Surgery, Sports Traumatology, Arthroscopy, 22(10), 2574–2581. Available from: https://doi.org/10.1007/s00167-014-2967-8
Talbot, S., Zordan, R., Bennett, K., Sasanelli, F., Griffith, A., Woodford, N. et al. (2023) Quadriceps tendon malalignment is an independent anatomical deformity which is the primary abnormality associated with lateral facet patellofemoral joint osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy, 31(12), 5950–5961. Available from: https://doi.org/10.1007/s00167-023-07661-z
Tardieu, C. & Dupont, J.Y. (2001) The origin of femoral trochlear dysplasia: comparative anatomy, evolution, and growth of the patellofemoral joint. Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur, 87, 373–383.
Varadarajan, K.M., Rubash, H.E. & Li, G. (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? The Journal of Arthroplasty, 26(2), 274–281. Available from: https://doi.org/10.1016/j.arth.2009.12.009
Yi, M., Hong, S.H., Choi, J.‐Y., Yoo, H.J., Kang, Y., Park, J. et al. (2015) Femoral trochlear groove morphometry assessed on oblique coronal MR images. American Journal of Roentgenology, 205(6), 1260–1268. Available from: https://doi.org/10.2214/AJR.15.14398

Auteurs

David Mazy (D)

Orthopedic Surgery Department, Lyon Ortho Clinic, Clinique de la Sauvegarde, Lyon, France.

Lucia Angelelli (L)

Orthopedic Surgery Department, Lyon Ortho Clinic, Clinique de la Sauvegarde, Lyon, France.

Nicolas Cance (N)

Orthopedic Surgery Department, Lyon Ortho Clinic, Clinique de la Sauvegarde, Lyon, France.

Edoardo Giovannetti de Sanctis (E)

Orthopedic Surgery Department, Lyon Ortho Clinic, Clinique de la Sauvegarde, Lyon, France.
ULS - Institut Universitaire Locomoteur et Sports. Chirurgie orthopédique., Pasteur 2 Hospital, CHU, Nice, France.

David H Dejour (DH)

Orthopedic Surgery Department, Lyon Ortho Clinic, Clinique de la Sauvegarde, Lyon, France.

Classifications MeSH