Analysis of microisolated frontal cortex excitatory layer III and V pyramidal neurons reveals a neurodegenerative phenotype in individuals with Down syndrome.

Alzheimer’s disease Bioinformatics Down syndrome Frontal cortex Laser capture microdissection RNA sequencing Selective vulnerability Trisomy

Journal

Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041

Informations de publication

Date de publication:
06 Aug 2024
Historique:
received: 04 03 2024
accepted: 13 07 2024
revised: 12 07 2024
medline: 6 8 2024
pubmed: 6 8 2024
entrez: 6 8 2024
Statut: epublish

Résumé

We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.

Identifiants

pubmed: 39105932
doi: 10.1007/s00401-024-02768-0
pii: 10.1007/s00401-024-02768-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16

Subventions

Organisme : NIA NIH HHS
ID : AG014449
Pays : United States
Organisme : NIA NIH HHS
ID : AG017617
Pays : United States
Organisme : NIA NIH HHS
ID : AG072599
Pays : United States
Organisme : NIA NIH HHS
ID : AG074004
Pays : United States
Organisme : NIA NIH HHS
ID : AG077103
Pays : United States
Organisme : NIA NIH HHS
ID : AG085572
Pays : United States
Organisme : NIA NIH HHS
ID : AG081286
Pays : United States

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

(2023) 2023 Alzheimer's disease facts and figures. Alzheimers Dement. https://doi.org/10.1002/alz.13016
(2021) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113
(2019) Picard toolkit. https://broadinstitute.github.io/picard/ . Accessed 8/24/22
Abbasi AZ, Kiyani DA, Hamid SM, Saalim M, Fahim A, Jalal N (2021) Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2. J Med Virol 93:4205–4218. https://doi.org/10.1002/jmv.26911
doi: 10.1002/jmv.26911 pubmed: 33638460 pmcid: 8014076
ABI (2004) Guide to performing relative quantitation of gene expression using real-time quantitative PCR. Appl Biosyst Prod Guide 1–60. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms_042380.pdf
Aldecoa I, Barroeta I, Carroll SL, Fortea J, Gilmore A, Ginsberg SD et al (2024) Down syndrome Biobank Consortium: a perspective. Alzheimers Dement 20:2262–2272. https://doi.org/10.1002/alz.13692
doi: 10.1002/alz.13692 pubmed: 38270275 pmcid: 10984425
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E et al (2018) CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer’s disease following maternal choline supplementation. Hippocampus 28:251–268. https://doi.org/10.1002/hipo.22832
doi: 10.1002/hipo.22832 pubmed: 29394516 pmcid: 5874173
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E et al (2019) Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease. Faseb j 33:9871–9884. https://doi.org/10.1096/fj.201802669RR
doi: 10.1096/fj.201802669RR pubmed: 31180719 pmcid: 6704451
Alldred MJ, Duff KE, Ginsberg SD (2012) Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiol Dis 45:751–762. https://doi.org/10.1016/j.nbd.2011.10.022
doi: 10.1016/j.nbd.2011.10.022 pubmed: 22079237
Alldred MJ, Ginsberg SD (2023) Microisolation of spatially characterized single populations of neurons for RNA sequencing from mouse and postmortem human brain tissues. J Clin Med 12:3304. https://doi.org/10.3390/jcm12093304
doi: 10.3390/jcm12093304 pubmed: 37176744 pmcid: 10179294
Alldred MJ, Lee SH, Ginsberg SD (2021) Adiponectin modulation by genotype and maternal choline supplementation in a mouse model of Down syndrome and Alzheimer’s disease. J Clin Med 10:2994. https://doi.org/10.3390/jcm10132994
doi: 10.3390/jcm10132994 pubmed: 34279477 pmcid: 8267749
Alldred MJ, Lee SH, Petkova E, Ginsberg SD (2015) Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer’s disease (AD). Brain Struct Funct 220:2983–2996. https://doi.org/10.1007/s00429-014-0839-0
doi: 10.1007/s00429-014-0839-0 pubmed: 25031177
Alldred MJ, Lee SH, Petkova E, Ginsberg SD (2015) Expression profile analysis of vulnerable CA1 pyramidal neurons in young-middle-aged Ts65Dn mice. J Comp Neurol 523:61–74. https://doi.org/10.1002/cne.23663
doi: 10.1002/cne.23663 pubmed: 25131634
Alldred MJ, Lee SH, Stutzmann GE, Ginsberg SD (2021) Oxidative phosphorylation is dysregulated within the basocortical circuit in a 6-month old mouse model of Down syndrome and Alzheimer’s disease. Front Aging Neurosci 13:707950. https://doi.org/10.3389/fnagi.2021.707950
doi: 10.3389/fnagi.2021.707950 pubmed: 34489678 pmcid: 8417045
Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC (2021) Aging with Down syndrome—where are we now and where are we going? J Clin Med 10:4687. https://doi.org/10.3390/jcm10204687
doi: 10.3390/jcm10204687 pubmed: 34682809 pmcid: 8539670
Alldred MJ, Penikalapati SC, Lee SH, Heguy A, Roussos P, Ginsberg SD (2021) Profiling basal forebrain cholinergic neurons reveals a molecular basis for vulnerability within the Ts65Dn model of Down syndrome and Alzheimer’s disease. Mol Neurobiol 58:5141–5162. https://doi.org/10.1007/s12035-021-02453-3
doi: 10.1007/s12035-021-02453-3 pubmed: 34263425 pmcid: 8680118
Alldred MJ, Pidikiti H, Heguy A, Roussos P, Ginsberg SD (2023) Basal forebrain cholinergic neurons are vulnerable in a mouse model of Down syndrome and their molecular fingerprint is rescued by maternal choline supplementation. FASEB J 37:e22944. https://doi.org/10.1096/fj.202202111RR
doi: 10.1096/fj.202202111RR pubmed: 37191946
Altafaj X, Martin ED, Ortiz-Abalia J, Valderrama A, Lao-Peregrin C, Dierssen M et al (2013) Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 52:117–127. https://doi.org/10.1016/j.nbd.2012.11.017
doi: 10.1016/j.nbd.2012.11.017 pubmed: 23220201
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556
doi: 10.1038/75556 pubmed: 10802651 pmcid: 3037419
Ball MJ, Nuttall K (1980) Neurofibrillary tangles, granulovacuolar degeneration, and neuron loss in Down Syndrome: quantitative comparison with Alzheimer dementia. Ann Neurol 7:462–465. https://doi.org/10.1002/ana.410070512
doi: 10.1002/ana.410070512 pubmed: 6446875
Ball SL, Holland AJ, Watson PC, Huppert FA (2010) Theoretical exploration of the neural bases of behavioural disinhibition, apathy and executive dysfunction in preclinical Alzheimer’s disease in people with Down’s syndrome: potential involvement of multiple frontal-subcortical neuronal circuits. J Intellect Disabil Res 54:320–336. https://doi.org/10.1111/j.1365-2788.2010.01261.x
doi: 10.1111/j.1365-2788.2010.01261.x pubmed: 20202073
Basten IA, Boada R, Taylor HG, Koenig K, Barrionuevo VL, Brandao AC et al (2018) On the design of broad-based neuropsychological test batteries to assess the cognitive abilities of individuals with Down syndrome in the context of clinical trials. Brain Sci 8:205. https://doi.org/10.3390/brainsci8120205
doi: 10.3390/brainsci8120205 pubmed: 30486228 pmcid: 6315396
Bianchi P, Ciani E, Guidi S, Trazzi S, Felice D, Grossi G et al (2010) Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. J Neurosci 30:8769–8779. https://doi.org/10.1523/JNEUROSCI.0534-10.2010
doi: 10.1523/JNEUROSCI.0534-10.2010 pubmed: 20592198 pmcid: 6632890
Bittles AH, Bower C, Hussain R, Glasson EJ (2007) The four ages of Down syndrome. Eur J Public Health 17:221–225. https://doi.org/10.1093/eurpub/ckl103
doi: 10.1093/eurpub/ckl103 pubmed: 16857692
Bletsch A, Mann C, Andrews DS, Daly E, Tan GMY, Murphy DGM et al (2018) Down syndrome is accompanied by significantly reduced cortical grey-white matter tissue contrast. Hum Brain Mapp 39:4043–4054. https://doi.org/10.1002/hbm.24230
doi: 10.1002/hbm.24230 pubmed: 29885016 pmcid: 6866483
Boada R, Hutaff-Lee C, Schrader A, Weitzenkamp D, Benke TA, Goldson EJ et al (2012) Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl Psychiatry 2:e141. https://doi.org/10.1038/tp.2012.66
doi: 10.1038/tp.2012.66 pubmed: 22806212 pmcid: 3410988
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics (Oxford, England) 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170 pubmed: 24695404
Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S et al (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12:2467–2483. https://doi.org/10.1080/15548627.2016.1239003
doi: 10.1080/15548627.2016.1239003 pubmed: 27813694 pmcid: 5173282
Bowen S, Ateh DD, Deinhardt K, Bird MM, Price KM, Baker CS et al (2007) The phagocytic capacity of neurones. Eur J Neurosci 25:2947–2955. https://doi.org/10.1111/j.1460-9568.2007.05554.x
doi: 10.1111/j.1460-9568.2007.05554.x pubmed: 17561810
Braudeau J, Delatour B, Duchon A, Pereira PL, Dauphinot L, de Chaumont F et al (2011) Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J Psychopharmacol 25:1030–1042. https://doi.org/10.1177/0269881111405366
doi: 10.1177/0269881111405366 pubmed: 21693554 pmcid: 3160204
Broberg P (2005) A comparative review of estimates of the proportion unchanged genes and the false discovery rate. BMC Bioinform 6:199
doi: 10.1186/1471-2105-6-199
Brown CA, Lally C, Kupelian V, Flanders WD (2021) Estimated prevalence and incidence of amyotrophic lateral sclerosis and SOD1 and C9orf72 genetic variants. Neuroepidemiology 55:342–353. https://doi.org/10.1159/000516752
doi: 10.1159/000516752 pubmed: 34247168
Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779
doi: 10.1038/378776a0 pubmed: 8524410
Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y et al (2015) Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 125:993–1005. https://doi.org/10.1172/jci75714
doi: 10.1172/jci75714 pubmed: 25621499 pmcid: 4362246
Cataldo AM, Petanceska S, Peterhoff CM, Terio NB, Epstein CJ, Villar A et al (2003) App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of Down syndrome. J Neurosci 23:6788–6792
doi: 10.1523/JNEUROSCI.23-17-06788.2003 pubmed: 12890772 pmcid: 6740714
Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286
doi: 10.1016/S0002-9440(10)64538-5 pubmed: 10880397 pmcid: 1850219
Chapman RS, Hesketh LJ (2000) Behavioral phenotype of individuals with Down syndrome. Ment Retard Dev Disabil Res Rev 6:84–95. https://doi.org/10.1002/1098-2779(2000)6:2%3c84::aid-mrdd2%3e3.0.co;2-p
doi: 10.1002/1098-2779(2000)6:2<84::aid-mrdd2>3.0.co;2-p pubmed: 10899801
Chen X, Cao W, Zhuang Y, Chen S, Li X (2021) Integrative analysis of potential biomarkers and immune cell infiltration in Parkinson’s disease. Brain Res Bull 177:53–63. https://doi.org/10.1016/j.brainresbull.2021.09.010
doi: 10.1016/j.brainresbull.2021.09.010 pubmed: 34536521
Cheon MS, Dierssen M, Kim SH, Lubec G (2008) Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids 35:339–343
doi: 10.1007/s00726-007-0618-9 pubmed: 18163181
Chung H, Green PHR, Wang TC, Kong XF (2021) Interferon-driven immune dysregulation in Down syndrome: a review of the evidence. J Inflamm Res 14:5187–5200. https://doi.org/10.2147/JIR.S280953
doi: 10.2147/JIR.S280953 pubmed: 34675597 pmcid: 8504936
Ciani L, Marzo A, Boyle K, Stamatakou E, Lopes DM, Anane D et al (2015) Wnt signalling tunes neurotransmitter release by directly targeting synaptotagmin-1. Nat Commun 6:8302. https://doi.org/10.1038/ncomms9302
doi: 10.1038/ncomms9302 pubmed: 26400647
Colacurcio DJ, Nixon RA (2016) Disorders of lysosomal acidification—the emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 32:75–88. https://doi.org/10.1016/j.arr.2016.05.004
doi: 10.1016/j.arr.2016.05.004 pubmed: 27197071 pmcid: 5112157
Conti A, Fabbrini F, D’Agostino P, Negri R, Greco D, Genesio R et al (2007) Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 8:268. https://doi.org/10.1186/1471-2164-8-268
doi: 10.1186/1471-2164-8-268 pubmed: 17683628 pmcid: 1964766
Cook LJ, Ho LW, Taylor AE, Brayne C, Evans JG, Xuereb J et al (2004) Candidate gene association studies of the alpha 4 (CHRNA4) and beta 2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer’s disease. Neurosci Lett 358:142–146. https://doi.org/10.1016/j.neulet.2004.01.016
doi: 10.1016/j.neulet.2004.01.016 pubmed: 15026168
Costa AC, Scott-McKean JJ (2013) Prospects for improving brain function in individuals with Down syndrome. CNS Drugs 27:679–702. https://doi.org/10.1007/s40263-013-0089-3
doi: 10.1007/s40263-013-0089-3 pubmed: 23821040
Dashinimaev EB, Artyuhov AS, Bolshakov AP, Vorotelyak EA, Vasiliev AV (2017) Neurons derived from induced pluripotent stem cells of patients with down syndrome reproduce early stages of Alzheimer’s disease type pathology in vitro. J Alzheimers Dis. https://doi.org/10.3233/jad-160945
doi: 10.3233/jad-160945 pubmed: 28059787
De Toma I, Dierssen M (2021) Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Sci Rep 11:1930. https://doi.org/10.1038/s41598-021-81451-w
doi: 10.1038/s41598-021-81451-w pubmed: 33479353 pmcid: 7820501
De Toma I, Sierra C, Dierssen M (2021) Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome. PLoS Comput Biol 17:e1009317. https://doi.org/10.1371/journal.pcbi.1009317
doi: 10.1371/journal.pcbi.1009317 pubmed: 34570756 pmcid: 8496798
Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045. https://doi.org/10.1152/physrev.00062.2017
doi: 10.1152/physrev.00062.2017 pubmed: 30565508
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29:15–21. https://doi.org/10.1093/bioinformatics/bts635
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Doran E, Keator D, Head E, Phelan MJ, Kim R, Totoiu M et al (2017) Down syndrome, partial trisomy 21, and absence of Alzheimer’s disease: the role of APP. J Alzheimers Dis 56:459–470. https://doi.org/10.3233/jad-160836
doi: 10.3233/jad-160836 pubmed: 27983553 pmcid: 5662115
Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW et al (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 413:77–81. https://doi.org/10.1016/j.neulet.2006.11.026
doi: 10.1016/j.neulet.2006.11.026 pubmed: 17145134
Espinosa JM (2020) Down syndrome and COVID-19: a perfect storm? Cell Rep Med 1:100019. https://doi.org/10.1016/j.xcrm.2020.100019
doi: 10.1016/j.xcrm.2020.100019 pubmed: 32501455 pmcid: 7252041
Farris S, Wang Y, Ward JM, Dudek SM (2017) Optimized method for robust transcriptome profiling of minute tissues using laser capture microdissection and low-Input RNA-seq. Front Mol Neurosci 10:185. https://doi.org/10.3389/fnmol.2017.00185
doi: 10.3389/fnmol.2017.00185 pubmed: 28659759 pmcid: 5468370
Foley JW, Zhu C, Jolivet P, Zhu SX, Lu P, Meaney MJ et al (2019) Gene expression profiling of single cells from archival tissue with laser-capture microdissection and Smart-3SEQ. Genome Res 29:1816–1825. https://doi.org/10.1101/gr.234807.118
doi: 10.1101/gr.234807.118 pubmed: 31519740 pmcid: 6836736
Fossati G, Morini R, Corradini I, Antonucci F, Trepte P, Edry E et al (2015) Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 22:1425–1436. https://doi.org/10.1038/cdd.2014.227
doi: 10.1038/cdd.2014.227 pubmed: 25678324 pmcid: 4532770
Fukuda Y, Berry TL, Nelson M, Hunter CL, Fukuhara K, Imai H et al (2010) Stimulated neuronal expression of brain-derived neurotrophic factor by neurotropin. Mol Cell Neurosci 45:226–233. https://doi.org/10.1016/j.mcn.2010.06.013
doi: 10.1016/j.mcn.2010.06.013 pubmed: 20600926
Garcia-Cerro S, Rueda N, Vidal V, Lantigua S, Martinez-Cue C (2017) Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer’s disease phenotypes. Neurobiol Dis 106:76–88. https://doi.org/10.1016/j.nbd.2017.06.010
doi: 10.1016/j.nbd.2017.06.010 pubmed: 28647555
Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893. https://doi.org/10.1016/j.biopsych.2010.05.030
doi: 10.1016/j.biopsych.2010.05.030 pubmed: 20655510 pmcid: 2965820
Ginsberg SD, Che S (2004) Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab Invest 84:952–962. https://doi.org/10.1038/labinvest.3700110
doi: 10.1038/labinvest.3700110 pubmed: 15107803
Hanney M, Prasher V, Williams N, Jones EL, Aarsland D, Corbett A et al (2012) Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet 379:528–536. https://doi.org/10.1016/S0140-6736(11)61676-0
doi: 10.1016/S0140-6736(11)61676-0 pubmed: 22236802
Harris CD, Ermak G, Davies KJ (2007) RCAN1-1L is overexpressed in neurons of Alzheimer’s disease patients. FEBS J 274:1715–1724. https://doi.org/10.1111/j.1742-4658.2007.05717.x
doi: 10.1111/j.1742-4658.2007.05717.x pubmed: 17331188
Hart SJ, Visootsak J, Tamburri P, Phuong P, Baumer N, Hernandez MC et al (2017) Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: strides to date. Am J Med Genet A 173:3029–3041. https://doi.org/10.1002/ajmg.a.38465
doi: 10.1002/ajmg.a.38465 pubmed: 28884975
Head E, Lott IT, Wilcock DM, Lemere CA (2016) Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res 13:18–29
doi: 10.2174/1567205012666151020114607 pubmed: 26651341 pmcid: 4948181
Hoffman GE, Roussos P (2021) Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics (Oxford, England) 37:192–201. https://doi.org/10.1093/bioinformatics/btaa687
doi: 10.1093/bioinformatics/btaa687 pubmed: 32730587
Hoffman GE, Schadt EE (2016) variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinform 17:483. https://doi.org/10.1186/s12859-016-1323-z
doi: 10.1186/s12859-016-1323-z
Holler CJ, Webb RL, Laux AL, Beckett TL, Niedowicz DM, Ahmed RR et al (2012) BACE2 expression increases in human neurodegenerative disease. Am J Pathol 180:337–350. https://doi.org/10.1016/j.ajpath.2011.09.034
doi: 10.1016/j.ajpath.2011.09.034 pubmed: 22074738 pmcid: 3338345
Huentelman M, De Both M, Jepsen W, Piras IS, Talboom JS, Willeman M et al (2019) Common BACE2 polymorphisms are associated with altered risk for Alzheimer’s disease and CSF amyloid biomarkers in APOE ε4 non-carriers. Sci Rep 9:9640. https://doi.org/10.1038/s41598-019-45896-4
doi: 10.1038/s41598-019-45896-4 pubmed: 31270419 pmcid: 6610620
Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772. https://doi.org/10.1083/jcb.200908164
doi: 10.1083/jcb.200908164 pubmed: 19951898 pmcid: 2806318
Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A et al (2010) Alzheimer’s-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci USA 107:1630–1635. https://doi.org/10.1073/pnas.0908953107
doi: 10.1073/pnas.0908953107 pubmed: 20080541
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12:e694. https://doi.org/10.1002/ctm2.694
doi: 10.1002/ctm2.694 pubmed: 35352511 pmcid: 8964935
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27
doi: 10.1093/nar/28.1.27 pubmed: 10592173 pmcid: 102409
Krämer A, Green J, Pollard J, Tugendreich S (2013) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics (Oxford, England) 30:523–530. https://doi.org/10.1093/bioinformatics/btt703
doi: 10.1093/bioinformatics/btt703 pubmed: 24336805
Landes SD, Stevens JD, Turk MA (2020) Cause of death in adults with Down syndrome in the United States. Disabil Health J 13:100947. https://doi.org/10.1016/j.dhjo.2020.100947
doi: 10.1016/j.dhjo.2020.100947 pubmed: 32680774 pmcid: 7655667
Lanzillotta C, Di Domenico F (2021) Stress responses in down syndrome neurodegeneration: state of the art and therapeutic molecules. Biomolecules. https://doi.org/10.3390/biom11020266
doi: 10.3390/biom11020266 pubmed: 33670211 pmcid: 7916967
Leake A, Perry EK, Perry RH, Jabeen S, Fairbairn AF, McKeith IG et al (1991) Neocortical concentrations of neuropeptides in senile dementia of the Alzheimer and Lewy body type: comparison with Parkinson’s disease and severity correlations. Biol Psychiatry 29:357–364. https://doi.org/10.1016/0006-3223(91)90221-7
doi: 10.1016/0006-3223(91)90221-7 pubmed: 1674664
Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid ß-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32
doi: 10.1006/nbdi.1996.0003 pubmed: 9173910
Leverenz JB, Raskind MA (1998) Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp Neurol 150:296–304
doi: 10.1006/exnr.1997.6777 pubmed: 9527899
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323
doi: 10.1186/1471-2105-12-323
Lipton SA (2007) Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci 8:803–808
doi: 10.1038/nrn2229 pubmed: 17882256
Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90:647–660. https://doi.org/10.1016/j.ygeno.2007.08.005
doi: 10.1016/j.ygeno.2007.08.005 pubmed: 17950572
Lott IT (2012) Neurological phenotypes for Down syndrome across the life span. Prog Brain Res 197:101–121. https://doi.org/10.1016/b978-0-444-54299-1.00006-6
doi: 10.1016/b978-0-444-54299-1.00006-6 pubmed: 22541290 pmcid: 3417824
Lott IT, Head E (2019) Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15:135–147. https://doi.org/10.1038/s41582-018-0132-6
doi: 10.1038/s41582-018-0132-6 pubmed: 30733618 pmcid: 8061428
Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ et al (2019) National population-based estimates for major birth defects, 2010–2014. Birth Defects Res 111:1420–1435. https://doi.org/10.1002/bdr2.1589
doi: 10.1002/bdr2.1589 pubmed: 31580536 pmcid: 7203968
Mann DM, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207
doi: 10.1111/j.1365-2990.1984.tb00351.x pubmed: 6234474
Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol App Neurobiol 12:447–457
doi: 10.1111/j.1365-2990.1986.tb00053.x
Mathys H, Peng Z, Boix CA, Victor MB, Leary N, Babu S et al (2023) Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186:4365-4385.e4327. https://doi.org/10.1016/j.cell.2023.08.039
doi: 10.1016/j.cell.2023.08.039 pubmed: 37774677
McCulloch CE, Searle SR, Neuhaus JM (2011) Generalized, linear, and mixed models, 2nd edn. Wiley, New York
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3
doi: 10.1007/s00401-011-0910-3 pubmed: 22101365
Morales-Corraliza J, Mazzella MJ, Berger JD, Diaz NS, Choi JH, Levy E et al (2009) In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: greater stability of sAPP in the beta-amyloid depositing mice. PLoS ONE 4:e7134. https://doi.org/10.1371/journal.pone.0007134
doi: 10.1371/journal.pone.0007134 pubmed: 19771166 pmcid: 2741602
Nikoletopoulou V, Tavernarakis N (2012) Calcium homeostasis in aging neurons. Front Genet 3:200. https://doi.org/10.3389/fgene.2012.00200
doi: 10.3389/fgene.2012.00200 pubmed: 23060904 pmcid: 3462315
Ogunshola OO, Antoniou X (2009) Contribution of hypoxia to Alzheimer’s disease: is HIF-1alpha a mediator of neurodegeneration? Cell Mol Life Sci 66:3555–3563. https://doi.org/10.1007/s00018-009-0141-0
doi: 10.1007/s00018-009-0141-0 pubmed: 19763399 pmcid: 11115623
Pages HCM, Falcon S, Li N (2019) AnnotationDbi: manipulation of SQLite-based annotations in bioconductor. https://doi.org/10.18129/B9.bioc.AnnotationDbi
Palmer CR, Liu CS, Romanow WJ, Lee MH, Chun J (2021) Altered cell and RNA isoform diversity in aging Down syndrome brains. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2114326118
doi: 10.1073/pnas.2114326118 pubmed: 34845022 pmcid: 8670442
Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE et al (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88:1008–1016. https://doi.org/10.1002/bdra.20735
doi: 10.1002/bdra.20735 pubmed: 20878909
Pathak V, Flatt PR, Irwin N (2018) Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides 100:229–235. https://doi.org/10.1016/j.peptides.2017.09.007
doi: 10.1016/j.peptides.2017.09.007 pubmed: 29412823
Perez SE, Miguel JC, He B, Malek-Ahmadi M, Abrahamson EE, Ikonomovic MD et al (2019) Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathol 137:413–436. https://doi.org/10.1007/s00401-019-01965-6
doi: 10.1007/s00401-019-01965-6 pubmed: 30734106 pmcid: 6541490
Piccoli C, Izzo A, Scrima R, Bonfiglio F, Manco R, Negri R et al (2013) Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects. Hum Mol Genet 22:1218–1232. https://doi.org/10.1093/hmg/dds529
doi: 10.1093/hmg/dds529 pubmed: 23257287
Pinter JD, Brown WE, Eliez S, Schmitt JE, Capone GT, Reiss AL (2001) Amygdala and hippocampal volumes in children with Down syndrome: a high-resolution MRI study. Neurology 56:972–974. https://doi.org/10.1212/wnl.56.7.972
doi: 10.1212/wnl.56.7.972 pubmed: 11294940
Pinter JD, Eliez S, Schmitt JE, Capone GT, Reiss AL (2001) Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry 158:1659–1665
doi: 10.1176/appi.ajp.158.10.1659 pubmed: 11578999
Pollmann S, Manginelli AA (2009) Anterior prefrontal involvement in implicit contextual change detection. Front Hum Neurosci 3:28. https://doi.org/10.3389/neuro.09.028.2009
doi: 10.3389/neuro.09.028.2009 pubmed: 19844614 pmcid: 2764349
Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC et al (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383
doi: 10.1002/ana.410430316 pubmed: 9506555
Qiagen (2020) https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS et al (2019) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35:775–795. https://doi.org/10.1007/s12640-019-0003-y
doi: 10.1007/s12640-019-0003-y pubmed: 30707354
Rau A, Gallopin M, Celeux G, Jaffrézic F (2013) Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics (Oxford, England) 29:2146–2152. https://doi.org/10.1093/bioinformatics/btt350
doi: 10.1093/bioinformatics/btt350 pubmed: 23821648
Richard E, den Brok M, van Gool WA (2021) Bayes analysis supports null hypothesis of anti-amyloid beta therapy in Alzheimer’s disease. Alzheimers Dement 17:1051–1055. https://doi.org/10.1002/alz.12379
doi: 10.1002/alz.12379 pubmed: 34057297
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26:139–140. https://doi.org/10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616 pubmed: 19910308
Rowe J, Lavender A, Turk V (2006) Cognitive executive function in Down’s syndrome. Br J Clin Psychol 45:5–17. https://doi.org/10.1348/014466505x29594
doi: 10.1348/014466505x29594 pubmed: 16480563
Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS et al (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem 104:1333–1344. https://doi.org/10.1111/j.1471-4159.2007.05075.x
doi: 10.1111/j.1471-4159.2007.05075.x pubmed: 18005339
Sendera TJ, Ma SY, Jaffar S, Kozlowski PB, Kordower JH, Mawal Y et al (2000) Reduction in TrkA-immunoreactive neurons is not associated with an overexpression of galaninergic fibers within the nucleus basalis in Down’s syndrome. J Neurochem 74:1185–1196
doi: 10.1046/j.1471-4159.2000.741185.x pubmed: 10693951
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
doi: 10.1101/gr.1239303 pubmed: 14597658 pmcid: 403769
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M et al (2021) Cellular senescence in brain aging. Front Aging Neurosci 13:646924. https://doi.org/10.3389/fnagi.2021.646924
doi: 10.3389/fnagi.2021.646924 pubmed: 33732142 pmcid: 7959760
Startin CM, Lowe B, Hamburg S, Hithersay R, Strydom A (2019) Validating the Cognitive Scale for Down Syndrome (CS-DS) to detect longitudinal cognitive decline in adults with Down syndrome. Front Psychiatry 10:158. https://doi.org/10.3389/fpsyt.2019.00158
doi: 10.3389/fpsyt.2019.00158 pubmed: 31057430 pmcid: 6477912
Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089. https://doi.org/10.1074/jbc.M105296200
doi: 10.1074/jbc.M105296200 pubmed: 11500508
Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, Smith KP, Liggett LA, Gomez EB, Galbraith MD et al (2016) Trisomy 21 consistently activates the interferon response. Elife 5:e16220. https://doi.org/10.7554/eLife.16220
doi: 10.7554/eLife.16220 pubmed: 27472900 pmcid: 5012864
Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 312:956–960
doi: 10.1126/science.1160342
Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. Faseb j 20:1369–1376. https://doi.org/10.1096/fj.05-5632com
doi: 10.1096/fj.05-5632com pubmed: 16816112
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2018) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131
doi: 10.1093/nar/gky1131 pmcid: 6323986
(2023) ThermoFisher. https://www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/taqman-gene-expression/single-tube-taqman-gene-expression-analysis/taqman-endogenous-controls.html . Accessed 12-05-2023
Thomazeau A, Lassalle O, Manzoni OJ (2023) Glutamatergic synaptic deficits in the prefrontal cortex of the Ts65Dn mouse model for Down syndrome. Front Neurosci 17:1171797. https://doi.org/10.3389/fnins.2023.1171797
doi: 10.3389/fnins.2023.1171797 pubmed: 37841687 pmcid: 10569174
Utagawa EC, Moreno DG, Schafernak KT, Arva NC, Malek-Ahmadi MH, Mufson EJ et al (2022) Neurogenesis and neuronal differentiation in the postnatal frontal cortex in Down syndrome. Acta Neuropathol Commun 10:86. https://doi.org/10.1186/s40478-022-01385-w
doi: 10.1186/s40478-022-01385-w pubmed: 35676735 pmcid: 9175369
van Bon BW, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K et al (2015) Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. https://doi.org/10.1038/mp.2015.5
doi: 10.1038/mp.2015.5 pubmed: 25707398 pmcid: 4547916
Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI et al (2013) Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 58:92–101. https://doi.org/10.1016/j.nbd.2013.04.016
doi: 10.1016/j.nbd.2013.04.016 pubmed: 23643842 pmcid: 4029409
Vico Varela E, Etter G, Williams S (2019) Excitatory-inhibitory imbalance in Alzheimer’s disease and therapeutic significance. Neurobiol Dis 127:605–615. https://doi.org/10.1016/j.nbd.2019.04.010
doi: 10.1016/j.nbd.2019.04.010 pubmed: 30999010
Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics (Oxford, England) 28:2184–2185. https://doi.org/10.1093/bioinformatics/bts356
doi: 10.1093/bioinformatics/bts356 pubmed: 22743226
Wang Z, Xu Q, Cai F, Liu X, Wu Y, Song W (2019) BACE2, a conditional β-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight. https://doi.org/10.1172/jci.insight.123431
doi: 10.1172/jci.insight.123431 pubmed: 31852846 pmcid: 6975273
Wegiel J, Dowjat K, Kaczmarski W, Kuchna I, Nowicki K, Frackowiak J et al (2008) The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol 116:391–407. https://doi.org/10.1007/s00401-008-0419-6
doi: 10.1007/s00401-008-0419-6 pubmed: 18696092 pmcid: 2656568
Wisniewski KE (1990) Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am J Med Genet Suppl 7:274–281. https://doi.org/10.1002/ajmg.1320370755
doi: 10.1002/ajmg.1320370755 pubmed: 2149962
Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282. https://doi.org/10.1002/ana.410170310
doi: 10.1002/ana.410170310 pubmed: 3158266
Yates CM, Simpson J, Maloney AF, Gordon A, Reid AH (1980) Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 2:979. https://doi.org/10.1016/s0140-6736(80)92137-6
doi: 10.1016/s0140-6736(80)92137-6 pubmed: 6107618
Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H et al (2002) Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 80:158–167
doi: 10.1046/j.0022-3042.2001.00683.x pubmed: 11796754
Yu Y, Chu PY, Bowser DN, Keating DJ, Dubach D, Harper I et al (2008) Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Hum Mol Genet 17:3281–3290
doi: 10.1093/hmg/ddn224 pubmed: 18676989
Zehetmayer S, Posch M, Graf A (2022) Impact of adaptive filtering on power and false discovery rate in RNA-seq experiments. BMC Bioinform 23:388. https://doi.org/10.1186/s12859-022-04928-z
doi: 10.1186/s12859-022-04928-z
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y et al (2022) Preliminary exploration of the co-regulation of Alzheimer’s disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 14:1069606. https://doi.org/10.3389/fnagi.2022.1069606
doi: 10.3389/fnagi.2022.1069606 pubmed: 36561136 pmcid: 9764863
Zigman WB, Lott IT (2007) Alzheimer’s disease in Down syndrome: neurobiology and risk. Ment Retard Dev Disabil Res Rev 13:237–246. https://doi.org/10.1002/mrdd.20163
doi: 10.1002/mrdd.20163 pubmed: 17910085

Auteurs

Melissa J Alldred (MJ)

Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.

Harshitha Pidikiti (H)

Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.

Kyrillos W Ibrahim (KW)

Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.

Sang Han Lee (SH)

Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.

Adriana Heguy (A)

Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA.
Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.

Gabriel E Hoffman (GE)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Panos Roussos (P)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Thomas Wisniewski (T)

Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA.
NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.

Jerzy Wegiel (J)

Department of Developmental Neurobiology, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.

Grace E Stutzmann (GE)

Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA.

Elliott J Mufson (EJ)

Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.

Stephen D Ginsberg (SD)

Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA. ginsberg@nki.rfmh.org.
Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA. ginsberg@nki.rfmh.org.
Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA. ginsberg@nki.rfmh.org.
NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA. ginsberg@nki.rfmh.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH