Comprehensive analysis of L-PRF exudate components and their impact on whole blood platelets.
Flow cytometry
Inflammatory cytokines
L-PRF exudate
Leukocyte subpopulations
Platelet activation
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
07 Aug 2024
07 Aug 2024
Historique:
received:
28
11
2023
accepted:
31
07
2024
medline:
7
8
2024
pubmed:
7
8
2024
entrez:
7
8
2024
Statut:
epublish
Résumé
This study assessed the cellular composition and effects of leukocyte-platelet-rich fibrin (L-PRF) exudate on whole blood platelets from healthy volunteers. Key objectives included evaluating leukocyte subpopulations, platelet activation markers, platelet-leukocyte interactions and quantifying inflammatory cytokines within the L-PRF exudate. L-PRF was obtained from 20 healthy donors. Flow cytometry methodologies were used to assess intracellular calcium kinetics and activated GPIIbIIIa, and P-selectin expression. Leukocyte subpopulations and platelet-leukocyte interactions were characterized using monoclonal antibodies. Inflammatory cytokines (IL-8, IL-1β, IL-6, IL-10, TNF, IL-12p70) within L-PRF exudate were quantified using a cytometric bead array. The expression of activated GPIIbIIIa, and P-selectin exhibited a significant increase (p < 0.001) when L-PRF exudate was added to platelets of whole blood. Regarding intracellular Ca Despite the study limitations, the research yielded important insights: 1- L-PRF exudate can stimulate platelet activation, essential in healing, tissue inflammation and remodeling. 2-The presence of leukocyte subpopulations within L-PRF exudate reflexes its complexity and potential to enhance immune responses. 3-The analysis of inflammatory cytokines within L-PRF exudate revealed its immunomodulatory potential. These findings are valuable evidences for understanding the potential role of L-PRF exudate in regenerative dentistry and medicine, offering innovative therapeutic strategies. This research highlights crucial aspects that could significantly influence the clinical use of L-PRF exudate in the oral cavity. The findings support the application of L-PRF exudate in both surgical and regenerative dentistry, facilitating the development of innovative therapeutic strategies to enhance patient outcomes.
Identifiants
pubmed: 39110266
doi: 10.1007/s00784-024-05868-z
pii: 10.1007/s00784-024-05868-z
doi:
Substances chimiques
Cytokines
0
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
470Subventions
Organisme : UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
ID : PAAALPRF_PI2RL_IINFACTS_2021
Organisme : UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
ID : PAAALPRF_PI2RL_IINFACTS_2021
Organisme : UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
ID : PAAALPRF_PI2RL_IINFACTS_2021
Organisme : UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
ID : PAAALPRF_PI2RL_IINFACTS_2021
Organisme : UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
ID : PAAALPRF_PI2RL_IINFACTS_2021
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Puricelli C, Boggio E, Gigliotti CL et al (2023) Platelets, protean cells with all-around functions and multifaceted pharmacological applications. Int J Mol Sci 24:4565. https://doi.org/10.3390/ijms24054565
doi: 10.3390/ijms24054565
pubmed: 36901997
pmcid: 10002540
Theofilis P, Sagris M, Oikonomou E et al (2022) Factors associated with platelet activation-recent pharmaceutical approaches. Int J Mol Sci 23:3301. https://doi.org/10.3390/ijms23063301
doi: 10.3390/ijms23063301
pubmed: 35328719
pmcid: 8955963
Jain A, Graveline A, Waterhouse A et al (2016) A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 7:10176. https://doi.org/10.1038/ncomms10176
doi: 10.1038/ncomms10176
pubmed: 26733371
pmcid: 4729824
Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23:177–189. https://doi.org/10.1016/j.blre.2009.04.001
doi: 10.1016/j.blre.2009.04.001
pubmed: 19450911
pmcid: 2720568
Gassling VLW, Açil Y, Springer IN et al (2009) Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:48–55. https://doi.org/10.1016/j.tripleo.2009.02.007
doi: 10.1016/j.tripleo.2009.02.007
pubmed: 19451011
van Dooren FH, Duijvis NW, te Velde AA (2013) Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. J Immunol Methods 396:128–133. https://doi.org/10.1016/j.jim.2013.08.006
doi: 10.1016/j.jim.2013.08.006
pubmed: 23994257
Davis VL, Abukabda AB, Radio NM et al (2014) Platelet-rich preparations to improve healing. Part II: platelet activation and enrichment, leukocyte inclusion, and other selection criteria. J Oral Implantol 40:511–521. https://doi.org/10.1563/AAID-JOI-D-12-00106
doi: 10.1563/AAID-JOI-D-12-00106
pubmed: 25106017
Jiménez-Aristizabal RF, López C, Álvarez ME et al (2017) Long-term cytokine and growth factor release from equine platelet-rich fibrin clots obtained with two different centrifugation protocols. Cytokine 97:149–155. https://doi.org/10.1016/j.cyto.2017.06.011
doi: 10.1016/j.cyto.2017.06.011
pubmed: 28648869
Toffler M (2014) Guided bone regeneration (GBR) using cortical bone pins in combination with leukocyte- and platelet-rich fibrin (L-PRF). Compend Contin Educ Dent 35:192–198
pubmed: 24773199
Panda S, Karanxha L, Goker F et al (2019) Autologous platelet concentrates in treatment of furcation defects-a systematic review and meta-analysis. Int J Mol Sci 20:1347. https://doi.org/10.3390/ijms20061347
doi: 10.3390/ijms20061347
pubmed: 30884920
pmcid: 6470588
Ding Z-Y, Tan Y, Peng Q et al (2021) Novel applications of platelet concentrates in tissue regeneration (review). Exp Ther Med 21:226. https://doi.org/10.3892/etm.2021.9657
doi: 10.3892/etm.2021.9657
pubmed: 33603835
pmcid: 7851614
Miron RJ, Zucchelli G, Pikos MA et al (2017) Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clin Oral Investig 21:1913–1927. https://doi.org/10.1007/s00784-017-2133-z
doi: 10.1007/s00784-017-2133-z
pubmed: 28551729
Dohan DM, Choukroun J, Diss A et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:e37–44. https://doi.org/10.1016/j.tripleo.2005.07.008
doi: 10.1016/j.tripleo.2005.07.008
pubmed: 16504849
Saluja H, Dehane V, Mahindra U (2011) Platelet-rich fibrin: a second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg 1:53–57. https://doi.org/10.4103/2231-0746.83158
doi: 10.4103/2231-0746.83158
pubmed: 23482459
pmcid: 3591032
Karimi K, Rockwell H (2019) The benefits of platelet-rich fibrin. Facial Plast Surg Clin North Am 27:331–340. https://doi.org/10.1016/j.fsc.2019.03.005
doi: 10.1016/j.fsc.2019.03.005
pubmed: 31280847
Pinto NR, Ubilla M, Zamora Y et al (2018) Leucocyte- and platelet-rich fibrin (L-PRF) as a regenerative medicine strategy for the treatment of refractory leg ulcers: a prospective cohort study. Platelets 29:468–475. https://doi.org/10.1080/09537104.2017.1327654
doi: 10.1080/09537104.2017.1327654
pubmed: 28727481
Dohan Ehrenfest DM, Del Corso M, Diss A et al (2010) Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol 81:546–555. https://doi.org/10.1902/jop.2009.090531
doi: 10.1902/jop.2009.090531
pubmed: 20373539
Yaprak E, Kasap M, Akpinar G et al (2018) Abundant proteins in platelet-rich fibrin and their potential contribution to wound healing: an explorative proteomics study and review of the literature. J Dent Sci 13:386–395. https://doi.org/10.1016/j.jds.2018.08.004
doi: 10.1016/j.jds.2018.08.004
pubmed: 30895150
pmcid: 6388803
Giannotti L, Di Chiara Stanca B, Spedicato F et al (2023) Progress in regenerative medicine: exploring autologous platelet concentrates and their clinical applications. Genes 14:1669. https://doi.org/10.3390/genes14091669
doi: 10.3390/genes14091669
pubmed: 37761809
pmcid: 10530962
Borie E, Oliví DG, Orsi IA et al (2015) Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 8:7922–7929
pubmed: 26221349
pmcid: 4509294
Wang X, Fok MR, Pelekos G et al (2022) Increased local concentrations of growth factors from leucocyte- and platelet-rich fibrin do not translate into improved alveolar ridge preservation: an intra-individual mechanistic randomized controlled trial. J Clin Periodontol 49:889–898. https://doi.org/10.1111/jcpe.13688
doi: 10.1111/jcpe.13688
pubmed: 35734895
Dohan DM, Choukroun J, Diss A et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:e45–50. https://doi.org/10.1016/j.tripleo.2005.07.009
doi: 10.1016/j.tripleo.2005.07.009
pubmed: 16504850
Micko L, Salma I, Skadins I et al (2023) Can our blood help ensure antimicrobial and anti-inflammatory properties in oral and maxillofacial surgery? Int J Mol Sci 24:1073. https://doi.org/10.3390/ijms24021073
doi: 10.3390/ijms24021073
pubmed: 36674589
pmcid: 9863626
Melo-Ferraz A, Coelho C, Miller P et al (2021) Platelet activation and antimicrobial activity of L-PRF: a preliminary study. Mol Biol Rep 48:4573–4580. https://doi.org/10.1007/s11033-021-06487-7
doi: 10.1007/s11033-021-06487-7
pubmed: 34146200
Castro AB, Herrero ER, Slomka V et al (2019) Antimicrobial capacity of leucocyte-and platelet rich fibrin against periodontal pathogens. Sci Rep 9:8188. https://doi.org/10.1038/s41598-019-44755-6
doi: 10.1038/s41598-019-44755-6
pubmed: 31160643
pmcid: 6547693
Badade PS, Mahale SA, Panjwani AA et al (2016) Antimicrobial effect of platelet-rich plasma and platelet-rich fibrin. Indian J Dent Res 27:300–304. https://doi.org/10.4103/0970-9290.186231
doi: 10.4103/0970-9290.186231
pubmed: 27411660
Madurantakam P, Yoganarasimha S, Hasan FK (2015) Characterization of leukocyte-platelet rich fibrin, a novel biomaterial. J Vis Exp 53221. https://doi.org/10.3791/53221
Kobayashi E, Flückiger L, Fujioka-Kobayashi M et al (2016) Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig 20:2353–2360. https://doi.org/10.1007/s00784-016-1719-1
doi: 10.1007/s00784-016-1719-1
pubmed: 26809431
Wang Z, Mudalal M, Sun Y et al (2020) The effects of leukocyte-platelet rich fibrin (L-PRF) on suppression of the expressions of the pro-inflammatory cytokines, and proliferation of Schwann cell, and neurotrophic factors. Sci Rep 10:2421. https://doi.org/10.1038/s41598-020-59319-2
doi: 10.1038/s41598-020-59319-2
pubmed: 32051476
pmcid: 7016122
Wang X, Fok MR, Pelekos G et al (2022) In vitro and ex vivo kinetic release profile of growth factors and cytokines from leucocyte- and platelet-rich fibrin (L-PRF) preparations. https://doi.org/10.3390/cells11132089 . Cells 11:2089
Miron RJ, Pinto NR, Quirynen M, Ghanaati S (2019) Standardization of relative centrifugal forces in studies related to platelet-rich fibrin. J Periodontol 90:817–820. https://doi.org/10.1002/JPER.18-0553
doi: 10.1002/JPER.18-0553
pubmed: 30730050
Miron R, Choukroun J, Ghanaati S (2018) Controversies related to scientific report describing g-forces from studies on platelet-rich fibrin: necessity for standardization of relative centrifugal force values. Int J Growth Factors Stem Cells Dentistry 1. https://doi.org/10.4103/GFSC.GFSC_23_18
Pinto N, Temmerman A, Castro A et al (2017) Guidelines for the use of L-PRF flow charts: step by step approach leucocytes and platelet rich fibrin in different intra-oral applications applying the IntraSpin
do Céu Monteiro M, Sansonetty F, Gonçalves MJ, O’Connor JE (1999) Flow cytometric kinetic assay of calcium mobilization in whole blood platelets using Fluo-3 and CD41. Cytometry 35:302–310
doi: 10.1002/(SICI)1097-0320(19990401)35:4<302::AID-CYTO2>3.0.CO;2-J
pubmed: 10213195
Schmitz G, Rothe G, Ruf A et al (1998) European working group on clinical cell analysis: consensus protocol for the flow cytometric characterisation of platelet function. Thromb Haemost 79:885–896
doi: 10.1055/s-0037-1615088
pubmed: 9609215
Pavlovic V, Ciric M, Jovanovic V et al (2021) Platelet-rich fibrin: basics of biological actions and protocol modifications. Open Med (Wars) 16:446–454. https://doi.org/10.1515/med-2021-0259
doi: 10.1515/med-2021-0259
pubmed: 33778163
McEver RP (1994) Selectins. Curr Opin Immunol 6:75–84. https://doi.org/10.1016/0952-7915(94)90037-x
doi: 10.1016/0952-7915(94)90037-x
pubmed: 7513527
Kappelmayer J, Nagy B, Miszti-Blasius K et al (2004) The emerging value of P-selectin as a disease marker. Clin Chem Lab Med 42:475–486. https://doi.org/10.1515/CCLM.2004.082
doi: 10.1515/CCLM.2004.082
pubmed: 15202782
Shattil SJ, Hoxie JA, Cunningham M, Brass LF (1985) Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 260:11107–11114
doi: 10.1016/S0021-9258(17)39154-8
pubmed: 2411729
Bielecki T, Dohan Ehrenfest DM, Everts PA, Wiczkowski A (2012) The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: new perspectives. Curr Pharm Biotechnol 13:1153–1162. https://doi.org/10.2174/138920112800624373
doi: 10.2174/138920112800624373
pubmed: 21740376
Ratajczak J, Vangansewinkel T, Gervois P et al (2018) Angiogenic properties of ‘Leukocyte- and platelet-rich fibrin.’ Sci Rep 8:14632. https://doi.org/10.1038/s41598-018-32936-8
doi: 10.1038/s41598-018-32936-8
pubmed: 30279483
Castro AB, Cortellini S, Temmerman A et al (2019) Characterization of the leukocyte- and platelet-rich fibrin block: release of growth factors, cellular content, and structure. Int J Oral Maxillofac Implants 34:855–864. https://doi.org/10.11607/jomi.7275
doi: 10.11607/jomi.7275
pubmed: 30742137
Cerletti C, de Gaetano G, Lorenzet R (2010) Platelet - leukocyte interactions: multiple links between inflammation, blood coagulation and vascular risk. Mediterr J Hematol Infect Dis 2:e2010023. https://doi.org/10.4084/MJHID.2010.023
doi: 10.4084/MJHID.2010.023
pubmed: 21415976
pmcid: 3033146
Jasmine S, Thangavelu A, Krishnamoorthy R et al (2021) Cytokine expression pattern and protein-protein interaction network analysis of leucocyte rich platelet rich fibrin and injectable form of platelet rich fibrin. Oral Maxillofac Surg 25:223–229. https://doi.org/10.1007/s10006-020-00899-8
doi: 10.1007/s10006-020-00899-8
pubmed: 32915342
Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27–37. https://doi.org/10.1097/AIA.0b013e318034194e
doi: 10.1097/AIA.0b013e318034194e
pubmed: 17426506
pmcid: 2785020
Choukroun J, Ghanaati S (2018) Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg 44:87–95. https://doi.org/10.1007/s00068-017-0767-9
doi: 10.1007/s00068-017-0767-9
pubmed: 28283682
Yu Z, Kastenmüller G, He Y et al (2011) Differences between human plasma and serum metabolite profiles. PLoS ONE 6:e21230. https://doi.org/10.1371/journal.pone.0021230
doi: 10.1371/journal.pone.0021230
pubmed: 21760889
pmcid: 3132215
Pochini A, de Antonioli C, Bucci E DZ, et al (2016) Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns. Einstein (Sao Paulo) 14:391–397. https://doi.org/10.1590/S1679-45082016AO3548
doi: 10.1590/S1679-45082016AO3548
pubmed: 27759829
Kim HO, Kim H-S, Youn J-C et al (2011) Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med 9:113. https://doi.org/10.1186/1479-5876-9-113
doi: 10.1186/1479-5876-9-113
pubmed: 21774806
pmcid: 3146842
Pockley AG, Foulds GA, Oughton JA et al (2015) Immune cell phenotyping using flow cytometry. Curr Protoc Toxicol 66:18.8.1–18.8.34
Givan AL (2004) Flow cytometry: an introduction. Methods Mol Biol 263:1–32. https://doi.org/10.1385/1-59259-773-4:001
doi: 10.1385/1-59259-773-4:001
pubmed: 14976358
Lucas F, Gil-Pulido J, LaMacchia J et al (2020) MiSet RFC standards: defining a universal minimum set of standards required for reproducibility and rigor in research flow cytometry experiments. Cytometry A 97:148–155. https://doi.org/10.1002/cyto.a.23940
doi: 10.1002/cyto.a.23940
pubmed: 31769204
Mohr H, Lambrecht B, Bayer A et al (2006) Basics of flow cytometry-based sterility testing of platelet concentrates. Transfusion 46:41–49. https://doi.org/10.1111/j.1537-2995.2005.00668.x
doi: 10.1111/j.1537-2995.2005.00668.x
pubmed: 16398729
Miron RJ, Fujioka-Kobayashi M, Sculean A, Zhang Y (2024) Optimization of platelet-rich fibrin. Periodontol 2000 94:79–91. https://doi.org/10.1111/prd.12521