Hydrogel mechanical properties in altered gravity.
Journal
NPJ microgravity
ISSN: 2373-8065
Titre abrégé: NPJ Microgravity
Pays: United States
ID NLM: 101703605
Informations de publication
Date de publication:
08 Aug 2024
08 Aug 2024
Historique:
received:
19
02
2022
accepted:
21
03
2024
medline:
9
8
2024
pubmed:
9
8
2024
entrez:
8
8
2024
Statut:
epublish
Résumé
Exposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties. Here we study the mechanical properties of Poly (ethylene glycol) diacrylate (PEGDA) and PEGDA incorporated with graphene oxide (GO) by performing tensile tests in micro and hypergravity during a Parabolic flight campaign, and by comparing them to the same tests performed in Earth gravity. We show that gravity levels do not result in a statistically significant difference in Young's modulus.
Identifiants
pubmed: 39117674
doi: 10.1038/s41526-024-00388-2
pii: 10.1038/s41526-024-00388-2
doi:
Types de publication
Journal Article
Langues
eng
Pagination
83Informations de copyright
© 2024. The Author(s).
Références
Burki, T. The final frontier: health in space. Lancet 398, 199–200 (2021).
pubmed: 34274056
doi: 10.1016/S0140-6736(21)01644-5
Bizzarri, M., Monici, M. & Loon, J. J. W. A. V. How microgravity affects the biology of living systems. Biomed. Res. Int. 2015, 863075 (2015).
Costa-Almeida, R., Granja, P. L. & Gomes, M. E. Gravity, tissue engineering, and the missing link. Trends Biotechnol. 36, 343–347 (2018).
pubmed: 29153346
doi: 10.1016/j.tibtech.2017.10.017
Liu, Y. & Wang, E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genom. Proteom. Bioinforma. 6, 29–41 (2008).
doi: 10.1016/S1672-0229(08)60018-2
Huang, P. et al. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 6, (2020).
Cialdai, F. et al. Modeled microgravity affects fibroblast functions related to wound healing. Microgravity Sci. Technol. 29, 121–132 (2017).
doi: 10.1007/s12217-016-9532-7
Ranieri, D. et al. Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Sci. Rep. 7, 1–10 (2017).
doi: 10.1038/s41598-017-00602-0
Costa-Almeida, R. et al. Effects of hypergravity on the angiogenic potential of endothelial cells. J. R. Soc. Interface 13 (2016).
Szulcek, R., van Bezu, J., Boonstra, J., van Loon, J. J. W. A. & van Nieuw Amerongen, G. P. Transient intervals of hyper-gravity enhance endothelial barrier integrity: Impact of mechanical and gravitational forces measured electrically. PLoS ONE 10, 1–16 (2015).
doi: 10.1371/journal.pone.0144269
Avitabile, E. et al. Bioinspired scaffold action under the extreme physiological conditions of simulated space flights: osteogenesis enhancing under microgravity. Front. Bioeng. Biotechnol. 8, 1–12 (2020).
doi: 10.3389/fbioe.2020.00722
Crescio, C. et al. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. Nanoscale 6, 9599–9603 (2014).
pubmed: 25029354
doi: 10.1039/C4NR02711F
Maier, J. A. M., Cialdai, F., Monici, M. & Morbidelli, L. The impact of microgravity and hypergravity on endothelial cells. Biomed. Res. Int. 2015 (2015).
Prasad, B. et al. Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro. Int. J. Mol. Sci. 21, 1–32 (2020).
doi: 10.3390/ijms21249373
Tauber, S. et al. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 12, 1–28 (2017).
doi: 10.1371/journal.pone.0175599
Guvendiren, M. & Burdick, J. A. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013).
pubmed: 23545441
pmcid: 3783596
doi: 10.1016/j.copbio.2013.03.009
Nicolas, J. et al. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules 21, 1968–1994 (2020).
pubmed: 32227919
doi: 10.1021/acs.biomac.0c00045
Cha, C., Liechty, W. B., Khademhosseini, A. & Peppas, N. A. Designing biomaterials to direct stem cell fate. ACS Nano 6, 9353–9358 (2012).
pubmed: 23136849
pmcid: 3508394
doi: 10.1021/nn304773b
Lawyer, T., McIntosh, K., Clavijo, C., Potekhina, L. & Mann, B. K. Formulation changes affect material properties and cell behavior in HA-based hydrogels. Int. J. Cell Biol. 2012, 18–21 (2012).
doi: 10.1155/2012/737421
Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).
pubmed: 27123816
pmcid: 5800304
doi: 10.1038/nmeth.3839
Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016).
pubmed: 27974772
pmcid: 8186828
doi: 10.1038/nature21005
Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).
pubmed: 12922147
doi: 10.1016/S0142-9612(03)00340-5
Camci-Unal, G., Annabi, N., Dokmeci, M. R., Liao, R. & Khademhosseini, A. Hydrogels for cardiac tissue engineering. NPG Asia Mater 6, (2014).
Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).
pubmed: 19472329
pmcid: 2997742
doi: 10.1002/bit.22361
Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 43, 3–12 (2002).
doi: 10.1016/S0169-409X(01)00239-3
Evans, N. D. & Gentleman, E. The role of material structure and mechanical properties in cell-matrix interactions. J. Mater. Chem. B 2, 2345–2356 (2014).
pubmed: 32261407
doi: 10.1039/c3tb21604g
Wang, L., Wang, C., Wu, S., Fan, Y. & Li, X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: Current progress and challenges. Biomater. Sci. 8, 2714–2733 (2020).
pubmed: 32307482
doi: 10.1039/D0BM00269K
Vedadghavami, A. et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62, 42–63 (2017).
pubmed: 28736220
doi: 10.1016/j.actbio.2017.07.028
Briskman, V. A. Gravitational effects in polymerization. Adv. Space Res. 24, 1199–1210 (1999).
doi: 10.1016/S0273-1177(99)00720-6
Kostarev, K. G. & Yudina, T. M. Effect of gravity on heat and mass transfer in polymerization. Heat. Transf. Res. 27, 379–382 (1996).
Briskman, V. A., Kostarev, K., Lyubimova, T., Levtov, V. & Romanov, V. Polymerization under microgravity: results and prospects. Cosm. Res. 39, 361–369 (2001).
doi: 10.1023/A:1017980313095
Briskman, V. A. et al. Polymerization in microgravity as a new process in space technology. Acta Astronaut. 48, 169–180 (2001).
doi: 10.1016/S0094-5765(00)00154-5
Durst, C. A., Cuchiara, M. P., Mansfield, E. G., West, J. L. & Grande-Allen, K. J. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 7, 2467–2476 (2011).
pubmed: 21329770
pmcid: 4667841
doi: 10.1016/j.actbio.2011.02.018
Huang, L. et al. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr. Polym. 225 (2019).
Nuttelman, C. R., Tripodi, M. C. & Anseth, K. S. Osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. In: Transactions—7th World Biomaterials Congress 900 (Australian Society for Biomaterials, 2004).
Bandyopadhyay, A., Mandal, B. B. & Bhardwaj, N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J. Biomed. Mater. Res. A 110, 884–898 (2022).
pubmed: 34913587
doi: 10.1002/jbm.a.37336
Hanna, K., Yasar-Inceoglu, O. & Yasar, O. Drug delivered poly(ethylene glycol) diacrylate (PEGDA) hydrogels and their mechanical characterization tests for tissue engineering applications. MRS Adv. 3, 1697–1702 (2018).
doi: 10.1557/adv.2018.104
Zhu, J. Design properties of hydrogel tissue engineering scaffolds. Exp. Rev. Med. Devices 8, 607–626 (2011).
doi: 10.1586/erd.11.27
Markert, C. D. et al. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J. Mech. Behav. Biomed. Mater. 27, 115–127 (2013).
pubmed: 23916408
doi: 10.1016/j.jmbbm.2013.07.008
Liu, Y. M., Ma, G. S., Zhang, D. H. & Zhao, D. W. Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling. J. Mater. Process. Technol. 223, 91–97 (2015).
doi: 10.1016/j.jmatprotec.2015.03.051
Tan, G., Wang, Y., Li, J. & Zhang, S. Synthesis and characterization of injectable photocrosslinking poly (ethylene glycol) diacrylate based hydrogels. Polym. Bull. 61, 91–98 (2008).
doi: 10.1007/s00289-008-0932-8
Mazzoccoli, J. P., Feke, D. L., Harihara, B. & Pintauro, P. N. Mechanical and cell viability properties of crosslinked low and high molecular weight poly(ethylene glycol) diacrylate blends. J. Biomed. Mater. Res. A 93, 558–566 (2010).
pubmed: 19585581
pmcid: 2845736
doi: 10.1002/jbm.a.32563
Khandaker, M., Orock, A., Tarantini, S., White, J. & Yasar, O. Biomechanical performances of networked polyethylene glycol diacrylate: effect of photoinitiator concentration, temperature, and incubation time. Int. J. Biomater. 2016 (2016).
Noh, M. et al. Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells. RSC Adv. 7, 20779–20788 (2017).
doi: 10.1039/C7RA02410J
Nuttelman, C. R., Tripodi, M. C. & Anseth, K. S. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol. 24, 208–218 (2005).
pubmed: 15896949
doi: 10.1016/j.matbio.2005.03.004
Varghese, S. et al. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 27, 12–21 (2008).
pubmed: 17689060
doi: 10.1016/j.matbio.2007.07.002
Hwang, N. S., Varghese, S., Li, H. & Elisseeff, J. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res. 344, 499–509 (2011).
pubmed: 21503601
doi: 10.1007/s00441-011-1153-2
Hwang, N. S. et al. Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett. 581, 4172–4178 (2007).
pubmed: 17692846
pmcid: 2692751
doi: 10.1016/j.febslet.2007.07.049
Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science (1979) 324, 59–63 (2009).
Yi, J., Choe, G., Park, J. & Lee, J. Y. Graphene oxide-incorporated hydrogels for biomedical applications. Polym. J. https://doi.org/10.1038/s41428-020-0350-9 (2020).
Wang, K. et al. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 8 (2010).
pubmed: 27502632
pmcid: 3212228
doi: 10.1007/s11671-010-9751-6
Pletser, V. et al. The first European parabolic flight campaign with the airbus A310 ZERO-G. Microgravity Sci. Technol. 28, 587–601 (2016).
doi: 10.1007/s12217-016-9515-8
Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).
pubmed: 20731455
doi: 10.1021/nn1006368
Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y 45, 1558–1565 (2007).
doi: 10.1016/j.carbon.2007.02.034
Bahadoran, M., Shamloo, A. & Nokoorani, Y. D. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci. Rep. 10, 7–9 (2020).
doi: 10.1038/s41598-020-64480-9
Macdougall, L. J., Pérez-Madrigal, M. M., Arno, M. C. & Dove, A. P. Nonswelling thiol-yne cross-linked hydrogel materials as cytocompatible soft tissue scaffolds. Biomacromolecules 19, 1378–1388 (2018).
pubmed: 29125285
doi: 10.1021/acs.biomac.7b01204
Park, H. et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro hansoo. Biomacromolecules 10, 541–546 (2009).
pubmed: 19173557
pmcid: 2765566
doi: 10.1021/bm801197m
Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials. (Cambridge University Press, 2008).
Wu, F., Pang, Y. & Liu, J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat. Commun. 11, 1–10 (2020).
doi: 10.1038/s41467-020-18308-9
Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A. & Shakoori, Z. Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem. 8, 42–55 (2018).
doi: 10.1016/j.mtchem.2018.02.004
Zhang, Y., Li, Y. & Liu, W. Dipole-dipole and h-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Adv. Funct. Mater. 25, 471–480 (2015).
doi: 10.1002/adfm.201401989
Alkayyali, L. B., Abu-Diak, O. A., Andrews, G. P. & Jones, D. S. Hydrogels as drug-delivery platforms: physicochemical barriers and solutions. Ther. Deliv. 3, 775–786 (2012).
pubmed: 22838072
doi: 10.4155/tde.12.48
Bespalov, A., Michel, M. C. & Steckler, T. in Handbook of Experimental Pharmacology (Springer, 2020).
Lang, T. A. & Secic, M. in How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors, and Reviewers (ACP Press, 2006).
Brungs, S. et al. Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Sci. Technol. 28, 191–203 (2016).
doi: 10.1007/s12217-015-9471-8
Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).
pubmed: 23252378
pmcid: 3549630
doi: 10.1089/ast.2012.0876