Modelling HIV-1 control and remission.
Journal
NPJ systems biology and applications
ISSN: 2056-7189
Titre abrégé: NPJ Syst Biol Appl
Pays: England
ID NLM: 101677786
Informations de publication
Date de publication:
08 Aug 2024
08 Aug 2024
Historique:
received:
08
03
2024
accepted:
23
07
2024
medline:
9
8
2024
pubmed:
9
8
2024
entrez:
8
8
2024
Statut:
epublish
Résumé
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Identifiants
pubmed: 39117718
doi: 10.1038/s41540-024-00407-8
pii: 10.1038/s41540-024-00407-8
doi:
Substances chimiques
Anti-HIV Agents
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
84Informations de copyright
© 2024. The Author(s).
Références
Bekker, L. G. et al. HIV infection. Nat. Rev. Dis. Prim. 9, 42, https://doi.org/10.1038/s41572-023-00452-3 (2023).
doi: 10.1038/s41572-023-00452-3
pubmed: 37591865
Deeks, S. G. et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 27, 2085–2098, https://doi.org/10.1038/s41591-021-01590-5 (2021).
doi: 10.1038/s41591-021-01590-5
pubmed: 34848888
Deeks, S. G. & Walker, B. D. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416, https://doi.org/10.1016/j.immuni.2007.08.010 (2007).
doi: 10.1016/j.immuni.2007.08.010
pubmed: 17892849
Saez-Cirion, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog. 9, e1003211, https://doi.org/10.1371/journal.ppat.1003211 (2013).
doi: 10.1371/journal.ppat.1003211
pubmed: 23516360
pmcid: 3597518
Li, J. Z. & Blankson, J. N. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. J. Clin. Invest. 131, e149414, https://doi.org/10.1172/JCI149414 (2021).
doi: 10.1172/JCI149414
pubmed: 34060478
pmcid: 8159676
Siliciano, J. D. & Siliciano, R. F. In vivo dynamics of the latent reservoir for HIV-1: new insights and implications for cure. Annu Rev. Pathol. 17, 271–294, https://doi.org/10.1146/annurev-pathol-050520-112001 (2022).
doi: 10.1146/annurev-pathol-050520-112001
pubmed: 34736342
Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563, https://doi.org/10.1038/nature21435 (2017).
doi: 10.1038/nature21435
pubmed: 28289286
pmcid: 5458531
Borducchi, E. N. et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 563, 360–364, https://doi.org/10.1038/s41586-018-0600-6 (2018).
doi: 10.1038/s41586-018-0600-6
pubmed: 30283138
pmcid: 6237629
Gaebler, C. et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 606, 368–374, https://doi.org/10.1038/s41586-022-04597-1 (2022).
doi: 10.1038/s41586-022-04597-1
pubmed: 35418681
pmcid: 9177424
Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514, https://doi.org/10.1038/nature12940 (2014).
doi: 10.1038/nature12940
pubmed: 24356306
pmcid: 4047036
He, X. et al. Rapid loss of CD4 T cells by pyroptosis during acute SIV infection in rhesus macaques. J. Virol. 96, e0080822, https://doi.org/10.1128/jvi.00808-22 (2022).
doi: 10.1128/jvi.00808-22
pubmed: 36000842
Graw, F. & Perelson, A. S. Modeling viral spread. Annu. Rev. Virol. 3, 555–572, https://doi.org/10.1146/annurev-virology-110615-042249 (2016).
doi: 10.1146/annurev-virology-110615-042249
pubmed: 27618637
pmcid: 5072357
McMyn, N. F. et al. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J. Clin. Invest. 133, e171554, https://doi.org/10.1172/JCI171554 (2023).
doi: 10.1172/JCI171554
pubmed: 37463049
pmcid: 10471168
Yang, O. O., Cumberland, W. G., Escobar, R., Liao, D. & Chew, K. W. Demographics and natural history of HIV-1-infected spontaneous controllers of viremia. AIDS 31, 1091–1098, https://doi.org/10.1097/qad.0000000000001443 (2017).
doi: 10.1097/qad.0000000000001443
pubmed: 28301422
Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells. Sci. Transl. Med. 11, eaax4077, https://doi.org/10.1126/scitranslmed.aax4077 (2019).
doi: 10.1126/scitranslmed.aax4077
pubmed: 31852798
pmcid: 7265335
Collins, D. R. et al. Functional impairment of HIV-specific CD8+ T cells precedes aborted spontaneous control of viremia. Immunity 54, 2372–2384 e2377, https://doi.org/10.1016/j.immuni.2021.08.007 (2021).
doi: 10.1016/j.immuni.2021.08.007
pubmed: 34496223
pmcid: 8516715
Jiang, C. et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 585, 261–267, https://doi.org/10.1038/s41586-020-2651-8 (2020).
doi: 10.1038/s41586-020-2651-8
pubmed: 32848246
pmcid: 7837306
Armani-Tourret, M. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat. Rev. Microbiol. 22, 328–344, https://doi.org/10.1038/s41579-024-01010-8 (2024).
doi: 10.1038/s41579-024-01010-8
pubmed: 38337034
Choudhary, S. K. et al. Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term asymptomatic disease. J. Virol. 81, 8838–8842, https://doi.org/10.1128/JVI.02663-06 (2007).
doi: 10.1128/JVI.02663-06
pubmed: 17537849
pmcid: 1951355
Namazi, G. et al. The control of HIV after antiretroviral medication pause (CHAMP) study: posttreatment controllers identified from 14 clinical studies. J. Infect. Dis. 218, 1954–1963, https://doi.org/10.1093/infdis/jiy479 (2018).
doi: 10.1093/infdis/jiy479
pubmed: 30085241
pmcid: 6217727
Passaes, C. et al. Early antiretroviral therapy favors post-treatment SIV control associated with the expansion of enhanced memory CD8+ T-cells. Nat. Commun. 15, 178, https://doi.org/10.1038/s41467-023-44389-3 (2024).
doi: 10.1038/s41467-023-44389-3
pubmed: 38212337
pmcid: 10784587
Pinkevych, M. et al. Timing of initiation of anti-retroviral therapy predicts post-treatment control of SIV replication. PLoS Pathog. 19, e1011660, https://doi.org/10.1371/journal.ppat.1011660 (2023).
doi: 10.1371/journal.ppat.1011660
pubmed: 37801446
pmcid: 10558076
Sharaf, R. et al. HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers. J. Clin. Invest. 128, 4074–4085, https://doi.org/10.1172/JCI120549 (2018).
doi: 10.1172/JCI120549
pubmed: 30024859
pmcid: 6118642
Etemad, B. et al. HIV post-treatment controllers have distinct immunological and virological features. Proc. Natl Acad. Sci. USA 120, e2218960120, https://doi.org/10.1073/pnas.2218960120 (2023).
doi: 10.1073/pnas.2218960120
pubmed: 36877848
pmcid: 10089217
Perelson, A. S. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36, https://doi.org/10.1038/nri700 (2002).
doi: 10.1038/nri700
pubmed: 11905835
Nowak, M. & May, R. M. Virus dynamics: mathematical principles of immunology and virology. (Oxford University Press, UK, 2000).
Hill, A. L., Rosenbloom, D. I. S., Nowak, M. A. & Siliciano, R. F. Insight into treatment of HIV infection from viral dynamics models. Immunol. Rev. 285, 9–25, https://doi.org/10.1111/imr.12698 (2018).
doi: 10.1111/imr.12698
pubmed: 30129208
pmcid: 6155466
Padmanabhan, P. & Dixit, N. M. in Quasispecies: From Theory to Experimental Systems (eds E. Domingo & P. Schuster) 277–302 (Springer International Publishing, 2016).
Perelson, A. S. & Ribeiro, R. M. Modeling the within-host dynamics of HIV infection. BMC Biol. 11, 96, https://doi.org/10.1186/1741-7007-11-96 (2013).
doi: 10.1186/1741-7007-11-96
pubmed: 24020860
pmcid: 3765939
Wang, S., Hottz, P., Schechter, M. & Rong, L. Modeling the slow CD4+ T cell decline in HIV-infected individuals. PLoS Comput Biol. 11, e1004665, https://doi.org/10.1371/journal.pcbi.1004665 (2016).
doi: 10.1371/journal.pcbi.1004665
Li, J. Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353, https://doi.org/10.1097/qad.0000000000000953 (2016).
doi: 10.1097/qad.0000000000000953
pubmed: 26588174
Goulder, P. & Deeks, S. G. HIV control: is getting there the same as staying there? PLoS Pathog. 14, e1007222, https://doi.org/10.1371/journal.ppat.1007222 (2018).
doi: 10.1371/journal.ppat.1007222
pubmed: 30383857
pmcid: 6211749
Conway, J. M. & Perelson, A. S. Post-treatment control of HIV infection. Proc. Natl Acad. Sci. USA 112, 5467–5472, https://doi.org/10.1073/pnas.1419162112 (2015).
doi: 10.1073/pnas.1419162112
pubmed: 25870266
pmcid: 4418889
Bonhoeffer, S., Rembiszewski, M., Ortiz, G. M. & Nixon, D. F. Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS 14, 2313–2322, https://doi.org/10.1097/00002030-200010200-00012 (2000).
doi: 10.1097/00002030-200010200-00012
pubmed: 11089619
Johnson, P. L. et al. Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. J. Virol. 85, 5565–5570, https://doi.org/10.1128/JVI.00166-11 (2011).
doi: 10.1128/JVI.00166-11
pubmed: 21411537
pmcid: 3094965
Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318, https://doi.org/10.1146/annurev-med-012017-043208 (2018).
doi: 10.1146/annurev-med-012017-043208
pubmed: 29414259
Baral, S., Antia, R. & Dixit, N. M. A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc. Natl Acad. Sci. USA 116, 17393–17398, https://doi.org/10.1073/pnas.1902178116 (2019).
doi: 10.1073/pnas.1902178116
pubmed: 31413198
pmcid: 6717250
Baral, S., Roy, R. & Dixit, N. M. Modeling how reversal of immune exhaustion elicits cure of chronic hepatitis C after the end of treatment with direct-acting antiviral agents. Immunol. Cell Biol. 96, 969–980, https://doi.org/10.1111/imcb.12161 (2018).
doi: 10.1111/imcb.12161
pubmed: 29744934
pmcid: 6220890
Chatterjee, B., Singh Sandhu, H. & Dixit, N. M. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathog. 18, e1010630, https://doi.org/10.1371/journal.ppat.1010630 (2022).
doi: 10.1371/journal.ppat.1010630
pubmed: 35759522
pmcid: 9269964
Desikan, R., Raja, R. & Dixit, N. M. Early exposure to broadly neutralizing antibodies may trigger a dynamical switch from progressive disease to lasting control of SHIV infection. PLoS Comput Biol. 16, e1008064, https://doi.org/10.1371/journal.pcbi.1008064 (2020).
doi: 10.1371/journal.pcbi.1008064
pubmed: 32817614
pmcid: 7462315
Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61, https://doi.org/10.1038/nri.2017.106 (2018).
doi: 10.1038/nri.2017.106
pubmed: 29063907
Nishimura, Y. et al. Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia. J. Exp. Med. 218, e20201214, https://doi.org/10.1084/jem.20201214 (2021).
doi: 10.1084/jem.20201214
pubmed: 32966579
Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287, https://doi.org/10.1038/nature20583 (2016).
doi: 10.1038/nature20583
pubmed: 27841870
pmcid: 5145754
Walker-Sperling, V. E. K. et al. Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nat. Commun. 13, 3463, https://doi.org/10.1038/s41467-022-31196-5 (2022).
doi: 10.1038/s41467-022-31196-5
pubmed: 35710819
pmcid: 9203527
Baral, S., Raja, R., Sen, P. & Dixit, N. M. Towards multiscale modeling of the CD8+ T cell response to viral infections. Wiley Interdiscip. Rev. Syst. Biol. Med. 11, e1446, https://doi.org/10.1002/wsbm.1446 (2019).
doi: 10.1002/wsbm.1446
pubmed: 30811096
pmcid: 6614031
McBrien, J. B., Kumar, N. A. & Silvestri, G. Mechanisms of CD8+ T cell-mediated suppression of HIV/SIV replication. Eur. J. Immunol. 48, 898–914, https://doi.org/10.1002/eji.201747172 (2018).
doi: 10.1002/eji.201747172
pubmed: 29427516
pmcid: 6531861
Seich Al Basatena, N. K. et al. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog. 9, e1003656, https://doi.org/10.1371/journal.ppat.1003656 (2013).
doi: 10.1371/journal.ppat.1003656
pubmed: 24244151
pmcid: 3828169
Klatt, N. R. et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 6, e1000747, https://doi.org/10.1371/journal.ppat.1000747 (2010).
doi: 10.1371/journal.ppat.1000747
pubmed: 20126441
pmcid: 2813271
Wong, J. K. et al. In vivo CD8+ T-cell suppression of SIV viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 6, e1000748, https://doi.org/10.1371/journal.ppat.1000748 (2010).
doi: 10.1371/journal.ppat.1000748
pubmed: 20126442
pmcid: 2813272
Gadhamsetty, S., Coorens, T. & de Boer, R. J. Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1-infected cells. J. Virol. 90, 7066–7083, https://doi.org/10.1128/JVI.00306-16 (2016).
doi: 10.1128/JVI.00306-16
pubmed: 27226367
pmcid: 4984658
Cao, Y., Cartwright, E. K., Silvestri, G. & Perelson, A. S. CD8+ lymphocyte control of SIV infection during antiretroviral therapy. PLoS Pathog. 14, e1007350, https://doi.org/10.1371/journal.ppat.1007350 (2018).
doi: 10.1371/journal.ppat.1007350
pubmed: 30308068
pmcid: 6199003
Policicchio, B. B. et al. CD8+ T cells control SIV infection using both cytolytic effects and non-cytolytic suppression of virus production. Nat. Commun. 14, 6657, https://doi.org/10.1038/s41467-023-42435-8 (2023).
doi: 10.1038/s41467-023-42435-8
pubmed: 37863982
pmcid: 10589330
De Boer, R. J. & Perelson, A. S. Quantifying T lymphocyte turnover. J. Theor. Biol. 327, 45–87, https://doi.org/10.1016/j.jtbi.2012.12.025 (2013).
doi: 10.1016/j.jtbi.2012.12.025
pubmed: 23313150
pmcid: 3640348
Migueles, S. A. et al. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 382, 1270–1276, https://doi.org/10.1126/science.adg0514 (2023).
doi: 10.1126/science.adg0514
pubmed: 38096385
Asquith, B., Edwards, C. T., Lipsitch, M. & McLean, A. R. Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol. 4, e90, https://doi.org/10.1371/journal.pbio.0040090 (2006).
doi: 10.1371/journal.pbio.0040090
pubmed: 16515366
pmcid: 1395353
Ganusov, V. V. et al. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J. Virol. 85, 10518–10528, https://doi.org/10.1128/JVI.00655-11 (2011).
doi: 10.1128/JVI.00655-11
pubmed: 21835793
pmcid: 3187476
Love, T. M., Thurston, S. W., Keefer, M. C., Dewhurst, S. & Lee, H. Y. Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences. J. Virol. 84, 5802–5814, https://doi.org/10.1128/JVI.00117-10 (2010).
doi: 10.1128/JVI.00117-10
pubmed: 20335256
pmcid: 2876615
Swan, D. A., Rolland, M., Herbeck, J. T., Schiffer, J. T. & Reeves, D. B. Evolution during primary HIV infection does not require adaptive immune selection. Proc. Natl Acad. Sci. USA 119, e2109172119, https://doi.org/10.1073/pnas.2109172119 (2022).
doi: 10.1073/pnas.2109172119
pubmed: 35145025
pmcid: 8851487
Roberts, H. E. et al. Structured observations reveal slow HIV-1 CTL escape. PLoS Genet. 11, e1004914, https://doi.org/10.1371/journal.pgen.1004914 (2015).
doi: 10.1371/journal.pgen.1004914
pubmed: 25642847
pmcid: 4333731
Nagaraja, P., Alexander, H. K., Bonhoeffer, S. & Dixit, N. M. Influence of recombination on acquisition and reversion of immune escape and compensatory mutations in HIV-1. Epidemics 14, 11–25, https://doi.org/10.1016/j.epidem.2015.09.001 (2016).
doi: 10.1016/j.epidem.2015.09.001
pubmed: 26972510
Pandit, A. & de Boer, R. J. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants. Retrovirology 11, 56, https://doi.org/10.1186/1742-4690-11-56 (2014).
doi: 10.1186/1742-4690-11-56
pubmed: 24996694
pmcid: 4227095
Barton, J. P. et al. Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable. Nat. Commun. 7, 11660, https://doi.org/10.1038/ncomms11660 (2016).
doi: 10.1038/ncomms11660
pubmed: 27212475
pmcid: 4879252
Rosenbloom, D. I., Hill, A. L., Rabi, S. A., Siliciano, R. F. & Nowak, M. A. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat. Med 18, 1378–1385, https://doi.org/10.1038/nm.2892 (2012).
doi: 10.1038/nm.2892
pubmed: 22941277
pmcid: 3490032
Ribeiro, R. M. & Bonhoeffer, S. Production of resistant HIV mutants during antiretroviral therapy. Proc. Natl Acad. Sci. USA 97, 7681–7686, https://doi.org/10.1073/pnas.97.14.7681 (2000).
doi: 10.1073/pnas.97.14.7681
pubmed: 10884399
pmcid: 16603
Arora, P. & Dixit, N. M. Timing the emergence of resistance to anti-HIV drugs with large genetic barriers. PLoS Comput. Biol. 5, e1000305, https://doi.org/10.1371/journal.pcbi.1000305 (2009).
doi: 10.1371/journal.pcbi.1000305
pubmed: 19282958
pmcid: 2643484
Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484, https://doi.org/10.1126/science.aav5095 (2019).
doi: 10.1126/science.aav5095
pubmed: 31048489
pmcid: 6855781
Lu, C. L. et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352, 1001–1004, https://doi.org/10.1126/science.aaf1279 (2016).
doi: 10.1126/science.aaf1279
pubmed: 27199430
pmcid: 5126967
Cardozo-Ojeda, E. F. & Perelson, A. S. Modeling HIV-1 within-host dynamics after passive infusion of the broadly neutralizing antibody VRC01. Front. Immunol. 12, 710012, https://doi.org/10.3389/fimmu.2021.710012 (2021).
doi: 10.3389/fimmu.2021.710012
pubmed: 34531859
pmcid: 8438300
Gardner, M. R. et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519, 87–91, https://doi.org/10.1038/nature14264 (2015).
doi: 10.1038/nature14264
pubmed: 25707797
pmcid: 4352131
Goyal, A. et al. Estimation of the in vivo neutralization potency of eCD4Ig and conditions for AAV-mediated production for SHIV long-term remission. Sci. Adv. 8, eabj5666, https://doi.org/10.1126/sciadv.abj5666 (2022).
doi: 10.1126/sciadv.abj5666
pubmed: 35020436
pmcid: 8754410
Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206, https://doi.org/10.1126/scitranslmed.aad5752 (2015).
doi: 10.1126/scitranslmed.aad5752
pubmed: 26702094
Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050, https://doi.org/10.1056/NEJMoa1608243 (2016).
doi: 10.1056/NEJMoa1608243
pubmed: 27959728
pmcid: 5292134
Crowell, T. A. et al. Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV 6, e297–e306, https://doi.org/10.1016/S2352-3018(19)30053-0 (2019).
doi: 10.1016/S2352-3018(19)30053-0
pubmed: 31000477
pmcid: 6693657
Saha, A. & Dixit, N. M. Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Comput. Biol. 16, e1008434, https://doi.org/10.1371/journal.pcbi.1008434 (2020).
doi: 10.1371/journal.pcbi.1008434
pubmed: 33253162
pmcid: 7728175
LaMont, C. et al. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. Elife 11, e76004, https://doi.org/10.7554/eLife.76004 (2022).
doi: 10.7554/eLife.76004
pubmed: 35852143
pmcid: 9467514
Tripathi, K., Balagam, R., Vishnoi, N. K. & Dixit, N. M. Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Comput. Biol. 8, e1002684, https://doi.org/10.1371/journal.pcbi.1002684 (2012).
doi: 10.1371/journal.pcbi.1002684
pubmed: 23028282
pmcid: 3441496
Gadhamsetty, S. & Dixit, N. M. Estimating frequencies of minority nevirapine-resistant strains in chronically HIV-1-infected individuals naive to nevirapine by using stochastic simulations and a mathematical model. J. Virol. 84, 10230–10240, https://doi.org/10.1128/JVI.01010-10 (2010).
doi: 10.1128/JVI.01010-10
pubmed: 20668070
pmcid: 2937761
Pennings, P. S. Standing genetic variation and the evolution of drug resistance in HIV. PLoS Comput. Biol. 8, e1002527, https://doi.org/10.1371/journal.pcbi.1002527 (2012).
doi: 10.1371/journal.pcbi.1002527
pubmed: 22685388
pmcid: 3369920
Schoofs, T. et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352, 997–1001, https://doi.org/10.1126/science.aaf0972 (2016).
doi: 10.1126/science.aaf0972
pubmed: 27199429
pmcid: 5151174
Thomas, P. et al. High-affinity mAb infusion can enhance maximum affinity maturation during HIV Env immunization. iScience 27, 109495, https://doi.org/10.1016/j.isci.2024.109495 (2024).
doi: 10.1016/j.isci.2024.109495
pubmed: 38550978
pmcid: 10973984
Garg, A. K., Desikan, R. & Dixit, N. M. Preferential presentation of high-affinity immune complexes in germinal centers can explain how passive immunization improves the humoral response. Cell Rep. 29, 3946–3957 e3945, https://doi.org/10.1016/j.celrep.2019.11.030 (2019).
doi: 10.1016/j.celrep.2019.11.030
pubmed: 31851925
pmcid: 7116025
Zhang, Y. et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210, 457–464, https://doi.org/10.1084/jem.20120150 (2013).
doi: 10.1084/jem.20120150
pubmed: 23420879
pmcid: 3600904
Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu Rev. Immunol. 40, 413–442, https://doi.org/10.1146/annurev-immunol-120419-022408 (2022).
doi: 10.1146/annurev-immunol-120419-022408
pubmed: 35113731
Wang, S. et al. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 160, 785–797, https://doi.org/10.1016/j.cell.2015.01.027 (2015).
doi: 10.1016/j.cell.2015.01.027
pubmed: 25662010
pmcid: 4357364
Luo, S. & Perelson, A. S. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. Proc. Natl Acad. Sci. USA 112, 11654–11659, https://doi.org/10.1073/pnas.1505207112 (2015).
doi: 10.1073/pnas.1505207112
pubmed: 26324897
pmcid: 4577154
Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648, https://doi.org/10.1073/pnas.1606050113 (2016).
doi: 10.1073/pnas.1606050113
pubmed: 27702895
pmcid: 5086995
Liao, H.-X. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476, https://doi.org/10.1038/nature12053 (2013).
doi: 10.1038/nature12053
pubmed: 23552890
pmcid: 3637846
Haynes, B. F. et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142–158, https://doi.org/10.1038/s41577-022-00753-w (2023).
doi: 10.1038/s41577-022-00753-w
pubmed: 35962033
Shaffer, J. S., Moore, P. L., Kardar, M. & Chakraborty, A. K. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens. Proc. Natl Acad. Sci. USA 113, E7039–E7048, https://doi.org/10.1073/pnas.1614940113 (2016).
doi: 10.1073/pnas.1614940113
pubmed: 27791170
pmcid: 5111661
Garg, A. K., Mitra, T., Schips, M., Bandyopadhyay, A. & Meyer-Hermann, M. Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: a computational study. Front. Immunol. 14, 1080853, https://doi.org/10.3389/fimmu.2023.1080853 (2023).
doi: 10.3389/fimmu.2023.1080853
pubmed: 36993964
pmcid: 10042134
Hill, A. L., Rosenbloom, D. I., Fu, F., Nowak, M. A. & Siliciano, R. F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl Acad. Sci. USA 111, 13475–13480, https://doi.org/10.1073/pnas.1406663111 (2014).
doi: 10.1073/pnas.1406663111
pubmed: 25097264
pmcid: 4169952
Pinkevych, M. et al. HIV Reactivation from latency after treatment interruption occurs on average every 5–8 days-implications for HIV remission. PLoS Pathog. 11, e1005000, https://doi.org/10.1371/journal.ppat.1005000 (2015).
doi: 10.1371/journal.ppat.1005000
pubmed: 26133551
pmcid: 4489624
Ke, R., Lewin, S. R., Elliott, J. H. & Perelson, A. S. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells. PLoS Pathog. 11, e1005237, https://doi.org/10.1371/journal.ppat.1005237 (2015).
doi: 10.1371/journal.ppat.1005237
pubmed: 26496627
pmcid: 4619772
Petravic, J., Rasmussen, T. A., Lewin, S. R., Kent, S. J. & Davenport, M. P. Relationship between measures of HIV reactivation and decline of the latent reservoir under latency-reversing agents. J. Virol. 91, e02092–16, https://doi.org/10.1128/jvi.02092-02016 (2017).
doi: 10.1128/jvi.02092-02016
pubmed: 28202759
pmcid: 5391444
Gupta, V. & Dixit, N. M. Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents. PLoS Comput. Biol. 14, e1006004, https://doi.org/10.1371/journal.pcbi.1006004 (2018).
doi: 10.1371/journal.pcbi.1006004
pubmed: 29451894
pmcid: 5833289
Cao, Y., Lei, X., Ribeiro, R. M., Perelson, A. S. & Liang, J. Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proc. Natl Acad. Sci. USA 115, 12453–12458, https://doi.org/10.1073/pnas.1811195115 (2018).
doi: 10.1073/pnas.1811195115
pubmed: 30455316
pmcid: 6298123
Conway, J. M. & Coombs, D. A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients. PLoS Comput. Biol. 7, e1002033, https://doi.org/10.1371/journal.pcbi.1002033 (2011).
doi: 10.1371/journal.pcbi.1002033
pubmed: 21552334
pmcid: 3084212
Rodari, A., Darcis, G. & Van Lint, C. M. The current status of latency reversing agents for HIV-1 remission. Annu Rev. Virol. 8, 491–514, https://doi.org/10.1146/annurev-virology-091919-103029 (2021).
doi: 10.1146/annurev-virology-091919-103029
pubmed: 34586875
Cummins, N. W. et al. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: a case study. PLoS Med. 14, e1002461, https://doi.org/10.1371/journal.pmed.1002461 (2017).
doi: 10.1371/journal.pmed.1002461
pubmed: 29182633
pmcid: 5705162
Henrich, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327, https://doi.org/10.7326/M14-1027 (2014).
doi: 10.7326/M14-1027
pubmed: 25047577
pmcid: 4236912
Siliciano, J. D. & Siliciano, R. F. HIV cure: the daunting scale of the problem. Science 383, 703–705, https://doi.org/10.1126/science.adk1831 (2024).
doi: 10.1126/science.adk1831
pubmed: 38359111
Lim, S. Y. et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 10, eaao4521, https://doi.org/10.1126/scitranslmed.aao4521 (2018).
doi: 10.1126/scitranslmed.aao4521
pubmed: 29720451
pmcid: 5973480
Kim, J. T. et al. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat. Commun. 13, 121, https://doi.org/10.1038/s41467-021-27647-0 (2022).
doi: 10.1038/s41467-021-27647-0
pubmed: 35013215
pmcid: 8748509
Turk, G. et al. A possible sterilizing cure of HIV-1 infection without stem cell transplantation. Ann. Intern. Med. 175, 95–100, https://doi.org/10.7326/L21-0297 (2021).
doi: 10.7326/L21-0297
pubmed: 34781719
pmcid: 9215120
Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698, https://doi.org/10.1056/NEJMoa0802905 (2009).
doi: 10.1056/NEJMoa0802905
pubmed: 19213682
Gupta, R. K. et al. Evidence for HIV-1 cure after CCR5Delta32/Delta32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7, e340–e347, https://doi.org/10.1016/S2352-3018(20)30069-2 (2020).
doi: 10.1016/S2352-3018(20)30069-2
pubmed: 32169158
pmcid: 7606918
Zhang, Z., Hou, W. & Chen, S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol. Sin. 37, 1–10, https://doi.org/10.1016/j.virs.2022.01.017 (2022).
doi: 10.1016/j.virs.2022.01.017
pubmed: 35234622
pmcid: 8922418
Tebas, P. et al. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J. Clin. Invest. 131, e144486, https://doi.org/10.1172/JCI144486 (2021).
doi: 10.1172/JCI144486
pubmed: 33571163
pmcid: 8011906
Fromentin, R. & Chomont, N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol. 51, 101438, https://doi.org/10.1016/j.smim.2020.101438 (2021).
doi: 10.1016/j.smim.2020.101438
pubmed: 33272901
Baxter, A. E. et al. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 20, 368–380, https://doi.org/10.1016/j.chom.2016.07.015 (2016).
doi: 10.1016/j.chom.2016.07.015
pubmed: 27545045
pmcid: 5025389
Grau-Exposito, J. et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog. 15, e1007991, https://doi.org/10.1371/journal.ppat.1007991 (2019).
doi: 10.1371/journal.ppat.1007991
pubmed: 31425551
pmcid: 6715238
Fletcher, C. V. et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl Acad. Sci. USA 111, 2307–2312, https://doi.org/10.1073/pnas.1318249111 (2014).
doi: 10.1073/pnas.1318249111
pubmed: 24469825
pmcid: 3926074
Moreno-Gamez, S. et al. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl Acad. Sci. USA 112, E2874–E2883, https://doi.org/10.1073/pnas.1424184112 (2015).
doi: 10.1073/pnas.1424184112
pubmed: 26038564
pmcid: 4460514
Feder, A. F., Harper, K. N., Brumme, C. J. & Pennings, P. S. Understanding patterns of HIV multi-drug resistance through models of temporal and spatial drug heterogeneity. Elife 10, e69032, https://doi.org/10.7554/eLife.69032 (2021).
doi: 10.7554/eLife.69032
pubmed: 34473060
pmcid: 8412921
Rabezanahary, H. et al. Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol. 13, 149–160, https://doi.org/10.1038/s41385-019-0221-x (2020).
doi: 10.1038/s41385-019-0221-x
pubmed: 31723251
Estes, J. D. et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 23, 1271–1276, https://doi.org/10.1038/nm.4411 (2017).
doi: 10.1038/nm.4411
pubmed: 28967921
pmcid: 5831193
Reeves, D. B. et al. A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat. Commun. 9, 4811, https://doi.org/10.1038/s41467-018-06843-5 (2018).
doi: 10.1038/s41467-018-06843-5
pubmed: 30446650
pmcid: 6240116
Reeves, D. B. et al. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat. Commun. 14, 6145, https://doi.org/10.1038/s41467-023-41521-1 (2023).
doi: 10.1038/s41467-023-41521-1
pubmed: 37783718
pmcid: 10545742
Reeves, D. B. et al. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci. Rep. 7, 4011, https://doi.org/10.1038/s41598-017-04160-3 (2017).
doi: 10.1038/s41598-017-04160-3
pubmed: 28638104
pmcid: 5479830
Kufera, J. T. et al. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J. Exp. Med. 221, e20231511, https://doi.org/10.1084/jem.20231511 (2024).
doi: 10.1084/jem.20231511
pubmed: 38270554
pmcid: 10818065
Kosmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350–354, https://doi.org/10.1038/nature08997 (2010).
doi: 10.1038/nature08997
pubmed: 20445539
pmcid: 3098720
Mora-Bitria, L. & Asquith, B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 75, 269–282, https://doi.org/10.1007/s00251-023-01293-w (2023).
doi: 10.1007/s00251-023-01293-w
pubmed: 36719466
pmcid: 9887252
Boelen, L. et al. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8(+) T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci. Immunol. 3, eaao2892, https://doi.org/10.1126/sciimmunol.aao2892 (2018).
doi: 10.1126/sciimmunol.aao2892
pubmed: 30413420
pmcid: 6277004
Viard, M. et al. Impact of HLA class I functional divergence on HIV control. Science 383, 319–325, https://doi.org/10.1126/science.adk0777 (2024).
doi: 10.1126/science.adk0777
pubmed: 38236978
Vemparala, B. et al. Antiviral capacity of the early CD8 T-cell response is predictive of natural control of SIV infection. https://doi.org/10.1101/2023.10.13.562306 (2023).
Passaes, C. et al. Optimal maturation of the SIV-specific CD8+ T cell response after primary infection is associated with natural control of SIV: ANRS SIC study. Cell Rep. 32, 108174, https://doi.org/10.1016/j.celrep.2020.108174 (2020).
doi: 10.1016/j.celrep.2020.108174
pubmed: 32966788
Sen, P., Saha, A. & Dixit, N. M. You cannot have your synergy and efficacy too. Trends Pharm. Sci. 40, 811–817, https://doi.org/10.1016/j.tips.2019.08.008 (2019).
doi: 10.1016/j.tips.2019.08.008
pubmed: 31610891
Desikan, R., Antia, R. & Dixit, N. M. Physical ‘strength’ of the multi-protein chain connecting immune cells: does the weakest link limit antibody affinity maturation? BioEssays 43, 2000159, https://doi.org/10.1002/bies.202000159 (2021).
doi: 10.1002/bies.202000159
Gubser, C., Chiu, C., Lewin, S. R. & Rasmussen, T. A. Immune checkpoint blockade in HIV. EBioMedicine 76, 103840, https://doi.org/10.1016/j.ebiom.2022.103840 (2022).
doi: 10.1016/j.ebiom.2022.103840
pubmed: 35123267
pmcid: 8882999
Caskey, M. Broadly neutralizing antibodies for the treatment and prevention of HIV infection. Curr. Opin. HIV AIDS 15, 49–55, https://doi.org/10.1097/COH.0000000000000600 (2020).
doi: 10.1097/COH.0000000000000600
pubmed: 31764199
pmcid: 7340121
Chen, Z. & Julg, B. Therapeutic vaccines for the treatment of HIV. Transl. Res. 223, 61–75, https://doi.org/10.1016/j.trsl.2020.04.008 (2020).
doi: 10.1016/j.trsl.2020.04.008
pubmed: 32438074
pmcid: 8188575
Board, N. L., Moskovljevic, M., Wu, F., Siliciano, R. F. & Siliciano, J. D. Engaging innate immunity in HIV-1 cure strategies. Nat. Rev. Immunol. 22, 499–512, https://doi.org/10.1038/s41577-021-00649-1 (2022).
doi: 10.1038/s41577-021-00649-1
pubmed: 34824401
Wensing, A. M. J., Chabannon, C. & Kuball, J. The connected worlds of stem cell transplantation and HIV. Lancet HIV 7, e594–e595, https://doi.org/10.1016/S2352-3018(20)30170-3 (2020).
doi: 10.1016/S2352-3018(20)30170-3
pubmed: 32649867
Mu, W., Carrillo, M. A. & Kitchen, S. G. Engineering CAR T cells to target the HIV reservoir. Front. Cell Infect. Microbiol. 10, 410, https://doi.org/10.3389/fcimb.2020.00410 (2020).
doi: 10.3389/fcimb.2020.00410
pubmed: 32903563
pmcid: 7438537