Modelling HIV-1 control and remission.


Journal

NPJ systems biology and applications
ISSN: 2056-7189
Titre abrégé: NPJ Syst Biol Appl
Pays: England
ID NLM: 101677786

Informations de publication

Date de publication:
08 Aug 2024
Historique:
received: 08 03 2024
accepted: 23 07 2024
medline: 9 8 2024
pubmed: 9 8 2024
entrez: 8 8 2024
Statut: epublish

Résumé

Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.

Identifiants

pubmed: 39117718
doi: 10.1038/s41540-024-00407-8
pii: 10.1038/s41540-024-00407-8
doi:

Substances chimiques

Anti-HIV Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

84

Informations de copyright

© 2024. The Author(s).

Références

Bekker, L. G. et al. HIV infection. Nat. Rev. Dis. Prim. 9, 42, https://doi.org/10.1038/s41572-023-00452-3 (2023).
doi: 10.1038/s41572-023-00452-3 pubmed: 37591865
Deeks, S. G. et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 27, 2085–2098, https://doi.org/10.1038/s41591-021-01590-5 (2021).
doi: 10.1038/s41591-021-01590-5 pubmed: 34848888
Deeks, S. G. & Walker, B. D. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416, https://doi.org/10.1016/j.immuni.2007.08.010 (2007).
doi: 10.1016/j.immuni.2007.08.010 pubmed: 17892849
Saez-Cirion, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog. 9, e1003211, https://doi.org/10.1371/journal.ppat.1003211 (2013).
doi: 10.1371/journal.ppat.1003211 pubmed: 23516360 pmcid: 3597518
Li, J. Z. & Blankson, J. N. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. J. Clin. Invest. 131, e149414, https://doi.org/10.1172/JCI149414 (2021).
doi: 10.1172/JCI149414 pubmed: 34060478 pmcid: 8159676
Siliciano, J. D. & Siliciano, R. F. In vivo dynamics of the latent reservoir for HIV-1: new insights and implications for cure. Annu Rev. Pathol. 17, 271–294, https://doi.org/10.1146/annurev-pathol-050520-112001 (2022).
doi: 10.1146/annurev-pathol-050520-112001 pubmed: 34736342
Nishimura, Y. et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 543, 559–563, https://doi.org/10.1038/nature21435 (2017).
doi: 10.1038/nature21435 pubmed: 28289286 pmcid: 5458531
Borducchi, E. N. et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 563, 360–364, https://doi.org/10.1038/s41586-018-0600-6 (2018).
doi: 10.1038/s41586-018-0600-6 pubmed: 30283138 pmcid: 6237629
Gaebler, C. et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 606, 368–374, https://doi.org/10.1038/s41586-022-04597-1 (2022).
doi: 10.1038/s41586-022-04597-1 pubmed: 35418681 pmcid: 9177424
Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514, https://doi.org/10.1038/nature12940 (2014).
doi: 10.1038/nature12940 pubmed: 24356306 pmcid: 4047036
He, X. et al. Rapid loss of CD4 T cells by pyroptosis during acute SIV infection in rhesus macaques. J. Virol. 96, e0080822, https://doi.org/10.1128/jvi.00808-22 (2022).
doi: 10.1128/jvi.00808-22 pubmed: 36000842
Graw, F. & Perelson, A. S. Modeling viral spread. Annu. Rev. Virol. 3, 555–572, https://doi.org/10.1146/annurev-virology-110615-042249 (2016).
doi: 10.1146/annurev-virology-110615-042249 pubmed: 27618637 pmcid: 5072357
McMyn, N. F. et al. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J. Clin. Invest. 133, e171554, https://doi.org/10.1172/JCI171554 (2023).
doi: 10.1172/JCI171554 pubmed: 37463049 pmcid: 10471168
Yang, O. O., Cumberland, W. G., Escobar, R., Liao, D. & Chew, K. W. Demographics and natural history of HIV-1-infected spontaneous controllers of viremia. AIDS 31, 1091–1098, https://doi.org/10.1097/qad.0000000000001443 (2017).
doi: 10.1097/qad.0000000000001443 pubmed: 28301422
Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells. Sci. Transl. Med. 11, eaax4077, https://doi.org/10.1126/scitranslmed.aax4077 (2019).
doi: 10.1126/scitranslmed.aax4077 pubmed: 31852798 pmcid: 7265335
Collins, D. R. et al. Functional impairment of HIV-specific CD8+ T cells precedes aborted spontaneous control of viremia. Immunity 54, 2372–2384 e2377, https://doi.org/10.1016/j.immuni.2021.08.007 (2021).
doi: 10.1016/j.immuni.2021.08.007 pubmed: 34496223 pmcid: 8516715
Jiang, C. et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 585, 261–267, https://doi.org/10.1038/s41586-020-2651-8 (2020).
doi: 10.1038/s41586-020-2651-8 pubmed: 32848246 pmcid: 7837306
Armani-Tourret, M. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat. Rev. Microbiol. 22, 328–344, https://doi.org/10.1038/s41579-024-01010-8 (2024).
doi: 10.1038/s41579-024-01010-8 pubmed: 38337034
Choudhary, S. K. et al. Low immune activation despite high levels of pathogenic human immunodeficiency virus type 1 results in long-term asymptomatic disease. J. Virol. 81, 8838–8842, https://doi.org/10.1128/JVI.02663-06 (2007).
doi: 10.1128/JVI.02663-06 pubmed: 17537849 pmcid: 1951355
Namazi, G. et al. The control of HIV after antiretroviral medication pause (CHAMP) study: posttreatment controllers identified from 14 clinical studies. J. Infect. Dis. 218, 1954–1963, https://doi.org/10.1093/infdis/jiy479 (2018).
doi: 10.1093/infdis/jiy479 pubmed: 30085241 pmcid: 6217727
Passaes, C. et al. Early antiretroviral therapy favors post-treatment SIV control associated with the expansion of enhanced memory CD8+ T-cells. Nat. Commun. 15, 178, https://doi.org/10.1038/s41467-023-44389-3 (2024).
doi: 10.1038/s41467-023-44389-3 pubmed: 38212337 pmcid: 10784587
Pinkevych, M. et al. Timing of initiation of anti-retroviral therapy predicts post-treatment control of SIV replication. PLoS Pathog. 19, e1011660, https://doi.org/10.1371/journal.ppat.1011660 (2023).
doi: 10.1371/journal.ppat.1011660 pubmed: 37801446 pmcid: 10558076
Sharaf, R. et al. HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers. J. Clin. Invest. 128, 4074–4085, https://doi.org/10.1172/JCI120549 (2018).
doi: 10.1172/JCI120549 pubmed: 30024859 pmcid: 6118642
Etemad, B. et al. HIV post-treatment controllers have distinct immunological and virological features. Proc. Natl Acad. Sci. USA 120, e2218960120, https://doi.org/10.1073/pnas.2218960120 (2023).
doi: 10.1073/pnas.2218960120 pubmed: 36877848 pmcid: 10089217
Perelson, A. S. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36, https://doi.org/10.1038/nri700 (2002).
doi: 10.1038/nri700 pubmed: 11905835
Nowak, M. & May, R. M. Virus dynamics: mathematical principles of immunology and virology. (Oxford University Press, UK, 2000).
Hill, A. L., Rosenbloom, D. I. S., Nowak, M. A. & Siliciano, R. F. Insight into treatment of HIV infection from viral dynamics models. Immunol. Rev. 285, 9–25, https://doi.org/10.1111/imr.12698 (2018).
doi: 10.1111/imr.12698 pubmed: 30129208 pmcid: 6155466
Padmanabhan, P. & Dixit, N. M. in Quasispecies: From Theory to Experimental Systems (eds E. Domingo & P. Schuster) 277–302 (Springer International Publishing, 2016).
Perelson, A. S. & Ribeiro, R. M. Modeling the within-host dynamics of HIV infection. BMC Biol. 11, 96, https://doi.org/10.1186/1741-7007-11-96 (2013).
doi: 10.1186/1741-7007-11-96 pubmed: 24020860 pmcid: 3765939
Wang, S., Hottz, P., Schechter, M. & Rong, L. Modeling the slow CD4+ T cell decline in HIV-infected individuals. PLoS Comput Biol. 11, e1004665, https://doi.org/10.1371/journal.pcbi.1004665 (2016).
doi: 10.1371/journal.pcbi.1004665
Li, J. Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353, https://doi.org/10.1097/qad.0000000000000953 (2016).
doi: 10.1097/qad.0000000000000953 pubmed: 26588174
Goulder, P. & Deeks, S. G. HIV control: is getting there the same as staying there? PLoS Pathog. 14, e1007222, https://doi.org/10.1371/journal.ppat.1007222 (2018).
doi: 10.1371/journal.ppat.1007222 pubmed: 30383857 pmcid: 6211749
Conway, J. M. & Perelson, A. S. Post-treatment control of HIV infection. Proc. Natl Acad. Sci. USA 112, 5467–5472, https://doi.org/10.1073/pnas.1419162112 (2015).
doi: 10.1073/pnas.1419162112 pubmed: 25870266 pmcid: 4418889
Bonhoeffer, S., Rembiszewski, M., Ortiz, G. M. & Nixon, D. F. Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS 14, 2313–2322, https://doi.org/10.1097/00002030-200010200-00012 (2000).
doi: 10.1097/00002030-200010200-00012 pubmed: 11089619
Johnson, P. L. et al. Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. J. Virol. 85, 5565–5570, https://doi.org/10.1128/JVI.00166-11 (2011).
doi: 10.1128/JVI.00166-11 pubmed: 21411537 pmcid: 3094965
Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318, https://doi.org/10.1146/annurev-med-012017-043208 (2018).
doi: 10.1146/annurev-med-012017-043208 pubmed: 29414259
Baral, S., Antia, R. & Dixit, N. M. A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc. Natl Acad. Sci. USA 116, 17393–17398, https://doi.org/10.1073/pnas.1902178116 (2019).
doi: 10.1073/pnas.1902178116 pubmed: 31413198 pmcid: 6717250
Baral, S., Roy, R. & Dixit, N. M. Modeling how reversal of immune exhaustion elicits cure of chronic hepatitis C after the end of treatment with direct-acting antiviral agents. Immunol. Cell Biol. 96, 969–980, https://doi.org/10.1111/imcb.12161 (2018).
doi: 10.1111/imcb.12161 pubmed: 29744934 pmcid: 6220890
Chatterjee, B., Singh Sandhu, H. & Dixit, N. M. Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathog. 18, e1010630, https://doi.org/10.1371/journal.ppat.1010630 (2022).
doi: 10.1371/journal.ppat.1010630 pubmed: 35759522 pmcid: 9269964
Desikan, R., Raja, R. & Dixit, N. M. Early exposure to broadly neutralizing antibodies may trigger a dynamical switch from progressive disease to lasting control of SHIV infection. PLoS Comput Biol. 16, e1008064, https://doi.org/10.1371/journal.pcbi.1008064 (2020).
doi: 10.1371/journal.pcbi.1008064 pubmed: 32817614 pmcid: 7462315
Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61, https://doi.org/10.1038/nri.2017.106 (2018).
doi: 10.1038/nri.2017.106 pubmed: 29063907
Nishimura, Y. et al. Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia. J. Exp. Med. 218, e20201214, https://doi.org/10.1084/jem.20201214 (2021).
doi: 10.1084/jem.20201214 pubmed: 32966579
Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287, https://doi.org/10.1038/nature20583 (2016).
doi: 10.1038/nature20583 pubmed: 27841870 pmcid: 5145754
Walker-Sperling, V. E. K. et al. Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nat. Commun. 13, 3463, https://doi.org/10.1038/s41467-022-31196-5 (2022).
doi: 10.1038/s41467-022-31196-5 pubmed: 35710819 pmcid: 9203527
Baral, S., Raja, R., Sen, P. & Dixit, N. M. Towards multiscale modeling of the CD8+ T cell response to viral infections. Wiley Interdiscip. Rev. Syst. Biol. Med. 11, e1446, https://doi.org/10.1002/wsbm.1446 (2019).
doi: 10.1002/wsbm.1446 pubmed: 30811096 pmcid: 6614031
McBrien, J. B., Kumar, N. A. & Silvestri, G. Mechanisms of CD8+ T cell-mediated suppression of HIV/SIV replication. Eur. J. Immunol. 48, 898–914, https://doi.org/10.1002/eji.201747172 (2018).
doi: 10.1002/eji.201747172 pubmed: 29427516 pmcid: 6531861
Seich Al Basatena, N. K. et al. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog. 9, e1003656, https://doi.org/10.1371/journal.ppat.1003656 (2013).
doi: 10.1371/journal.ppat.1003656 pubmed: 24244151 pmcid: 3828169
Klatt, N. R. et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 6, e1000747, https://doi.org/10.1371/journal.ppat.1000747 (2010).
doi: 10.1371/journal.ppat.1000747 pubmed: 20126441 pmcid: 2813271
Wong, J. K. et al. In vivo CD8+ T-cell suppression of SIV viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 6, e1000748, https://doi.org/10.1371/journal.ppat.1000748 (2010).
doi: 10.1371/journal.ppat.1000748 pubmed: 20126442 pmcid: 2813272
Gadhamsetty, S., Coorens, T. & de Boer, R. J. Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1-infected cells. J. Virol. 90, 7066–7083, https://doi.org/10.1128/JVI.00306-16 (2016).
doi: 10.1128/JVI.00306-16 pubmed: 27226367 pmcid: 4984658
Cao, Y., Cartwright, E. K., Silvestri, G. & Perelson, A. S. CD8+ lymphocyte control of SIV infection during antiretroviral therapy. PLoS Pathog. 14, e1007350, https://doi.org/10.1371/journal.ppat.1007350 (2018).
doi: 10.1371/journal.ppat.1007350 pubmed: 30308068 pmcid: 6199003
Policicchio, B. B. et al. CD8+ T cells control SIV infection using both cytolytic effects and non-cytolytic suppression of virus production. Nat. Commun. 14, 6657, https://doi.org/10.1038/s41467-023-42435-8 (2023).
doi: 10.1038/s41467-023-42435-8 pubmed: 37863982 pmcid: 10589330
De Boer, R. J. & Perelson, A. S. Quantifying T lymphocyte turnover. J. Theor. Biol. 327, 45–87, https://doi.org/10.1016/j.jtbi.2012.12.025 (2013).
doi: 10.1016/j.jtbi.2012.12.025 pubmed: 23313150 pmcid: 3640348
Migueles, S. A. et al. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 382, 1270–1276, https://doi.org/10.1126/science.adg0514 (2023).
doi: 10.1126/science.adg0514 pubmed: 38096385
Asquith, B., Edwards, C. T., Lipsitch, M. & McLean, A. R. Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol. 4, e90, https://doi.org/10.1371/journal.pbio.0040090 (2006).
doi: 10.1371/journal.pbio.0040090 pubmed: 16515366 pmcid: 1395353
Ganusov, V. V. et al. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J. Virol. 85, 10518–10528, https://doi.org/10.1128/JVI.00655-11 (2011).
doi: 10.1128/JVI.00655-11 pubmed: 21835793 pmcid: 3187476
Love, T. M., Thurston, S. W., Keefer, M. C., Dewhurst, S. & Lee, H. Y. Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences. J. Virol. 84, 5802–5814, https://doi.org/10.1128/JVI.00117-10 (2010).
doi: 10.1128/JVI.00117-10 pubmed: 20335256 pmcid: 2876615
Swan, D. A., Rolland, M., Herbeck, J. T., Schiffer, J. T. & Reeves, D. B. Evolution during primary HIV infection does not require adaptive immune selection. Proc. Natl Acad. Sci. USA 119, e2109172119, https://doi.org/10.1073/pnas.2109172119 (2022).
doi: 10.1073/pnas.2109172119 pubmed: 35145025 pmcid: 8851487
Roberts, H. E. et al. Structured observations reveal slow HIV-1 CTL escape. PLoS Genet. 11, e1004914, https://doi.org/10.1371/journal.pgen.1004914 (2015).
doi: 10.1371/journal.pgen.1004914 pubmed: 25642847 pmcid: 4333731
Nagaraja, P., Alexander, H. K., Bonhoeffer, S. & Dixit, N. M. Influence of recombination on acquisition and reversion of immune escape and compensatory mutations in HIV-1. Epidemics 14, 11–25, https://doi.org/10.1016/j.epidem.2015.09.001 (2016).
doi: 10.1016/j.epidem.2015.09.001 pubmed: 26972510
Pandit, A. & de Boer, R. J. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants. Retrovirology 11, 56, https://doi.org/10.1186/1742-4690-11-56 (2014).
doi: 10.1186/1742-4690-11-56 pubmed: 24996694 pmcid: 4227095
Barton, J. P. et al. Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable. Nat. Commun. 7, 11660, https://doi.org/10.1038/ncomms11660 (2016).
doi: 10.1038/ncomms11660 pubmed: 27212475 pmcid: 4879252
Rosenbloom, D. I., Hill, A. L., Rabi, S. A., Siliciano, R. F. & Nowak, M. A. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat. Med 18, 1378–1385, https://doi.org/10.1038/nm.2892 (2012).
doi: 10.1038/nm.2892 pubmed: 22941277 pmcid: 3490032
Ribeiro, R. M. & Bonhoeffer, S. Production of resistant HIV mutants during antiretroviral therapy. Proc. Natl Acad. Sci. USA 97, 7681–7686, https://doi.org/10.1073/pnas.97.14.7681 (2000).
doi: 10.1073/pnas.97.14.7681 pubmed: 10884399 pmcid: 16603
Arora, P. & Dixit, N. M. Timing the emergence of resistance to anti-HIV drugs with large genetic barriers. PLoS Comput. Biol. 5, e1000305, https://doi.org/10.1371/journal.pcbi.1000305 (2009).
doi: 10.1371/journal.pcbi.1000305 pubmed: 19282958 pmcid: 2643484
Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484, https://doi.org/10.1126/science.aav5095 (2019).
doi: 10.1126/science.aav5095 pubmed: 31048489 pmcid: 6855781
Lu, C. L. et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352, 1001–1004, https://doi.org/10.1126/science.aaf1279 (2016).
doi: 10.1126/science.aaf1279 pubmed: 27199430 pmcid: 5126967
Cardozo-Ojeda, E. F. & Perelson, A. S. Modeling HIV-1 within-host dynamics after passive infusion of the broadly neutralizing antibody VRC01. Front. Immunol. 12, 710012, https://doi.org/10.3389/fimmu.2021.710012 (2021).
doi: 10.3389/fimmu.2021.710012 pubmed: 34531859 pmcid: 8438300
Gardner, M. R. et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519, 87–91, https://doi.org/10.1038/nature14264 (2015).
doi: 10.1038/nature14264 pubmed: 25707797 pmcid: 4352131
Goyal, A. et al. Estimation of the in vivo neutralization potency of eCD4Ig and conditions for AAV-mediated production for SHIV long-term remission. Sci. Adv. 8, eabj5666, https://doi.org/10.1126/sciadv.abj5666 (2022).
doi: 10.1126/sciadv.abj5666 pubmed: 35020436 pmcid: 8754410
Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206, https://doi.org/10.1126/scitranslmed.aad5752 (2015).
doi: 10.1126/scitranslmed.aad5752 pubmed: 26702094
Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050, https://doi.org/10.1056/NEJMoa1608243 (2016).
doi: 10.1056/NEJMoa1608243 pubmed: 27959728 pmcid: 5292134
Crowell, T. A. et al. Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV 6, e297–e306, https://doi.org/10.1016/S2352-3018(19)30053-0 (2019).
doi: 10.1016/S2352-3018(19)30053-0 pubmed: 31000477 pmcid: 6693657
Saha, A. & Dixit, N. M. Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Comput. Biol. 16, e1008434, https://doi.org/10.1371/journal.pcbi.1008434 (2020).
doi: 10.1371/journal.pcbi.1008434 pubmed: 33253162 pmcid: 7728175
LaMont, C. et al. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. Elife 11, e76004, https://doi.org/10.7554/eLife.76004 (2022).
doi: 10.7554/eLife.76004 pubmed: 35852143 pmcid: 9467514
Tripathi, K., Balagam, R., Vishnoi, N. K. & Dixit, N. M. Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Comput. Biol. 8, e1002684, https://doi.org/10.1371/journal.pcbi.1002684 (2012).
doi: 10.1371/journal.pcbi.1002684 pubmed: 23028282 pmcid: 3441496
Gadhamsetty, S. & Dixit, N. M. Estimating frequencies of minority nevirapine-resistant strains in chronically HIV-1-infected individuals naive to nevirapine by using stochastic simulations and a mathematical model. J. Virol. 84, 10230–10240, https://doi.org/10.1128/JVI.01010-10 (2010).
doi: 10.1128/JVI.01010-10 pubmed: 20668070 pmcid: 2937761
Pennings, P. S. Standing genetic variation and the evolution of drug resistance in HIV. PLoS Comput. Biol. 8, e1002527, https://doi.org/10.1371/journal.pcbi.1002527 (2012).
doi: 10.1371/journal.pcbi.1002527 pubmed: 22685388 pmcid: 3369920
Schoofs, T. et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352, 997–1001, https://doi.org/10.1126/science.aaf0972 (2016).
doi: 10.1126/science.aaf0972 pubmed: 27199429 pmcid: 5151174
Thomas, P. et al. High-affinity mAb infusion can enhance maximum affinity maturation during HIV Env immunization. iScience 27, 109495, https://doi.org/10.1016/j.isci.2024.109495 (2024).
doi: 10.1016/j.isci.2024.109495 pubmed: 38550978 pmcid: 10973984
Garg, A. K., Desikan, R. & Dixit, N. M. Preferential presentation of high-affinity immune complexes in germinal centers can explain how passive immunization improves the humoral response. Cell Rep. 29, 3946–3957 e3945, https://doi.org/10.1016/j.celrep.2019.11.030 (2019).
doi: 10.1016/j.celrep.2019.11.030 pubmed: 31851925 pmcid: 7116025
Zhang, Y. et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210, 457–464, https://doi.org/10.1084/jem.20120150 (2013).
doi: 10.1084/jem.20120150 pubmed: 23420879 pmcid: 3600904
Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu Rev. Immunol. 40, 413–442, https://doi.org/10.1146/annurev-immunol-120419-022408 (2022).
doi: 10.1146/annurev-immunol-120419-022408 pubmed: 35113731
Wang, S. et al. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 160, 785–797, https://doi.org/10.1016/j.cell.2015.01.027 (2015).
doi: 10.1016/j.cell.2015.01.027 pubmed: 25662010 pmcid: 4357364
Luo, S. & Perelson, A. S. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. Proc. Natl Acad. Sci. USA 112, 11654–11659, https://doi.org/10.1073/pnas.1505207112 (2015).
doi: 10.1073/pnas.1505207112 pubmed: 26324897 pmcid: 4577154
Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648, https://doi.org/10.1073/pnas.1606050113 (2016).
doi: 10.1073/pnas.1606050113 pubmed: 27702895 pmcid: 5086995
Liao, H.-X. et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496, 469–476, https://doi.org/10.1038/nature12053 (2013).
doi: 10.1038/nature12053 pubmed: 23552890 pmcid: 3637846
Haynes, B. F. et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142–158, https://doi.org/10.1038/s41577-022-00753-w (2023).
doi: 10.1038/s41577-022-00753-w pubmed: 35962033
Shaffer, J. S., Moore, P. L., Kardar, M. & Chakraborty, A. K. Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens. Proc. Natl Acad. Sci. USA 113, E7039–E7048, https://doi.org/10.1073/pnas.1614940113 (2016).
doi: 10.1073/pnas.1614940113 pubmed: 27791170 pmcid: 5111661
Garg, A. K., Mitra, T., Schips, M., Bandyopadhyay, A. & Meyer-Hermann, M. Amount of antigen, T follicular helper cells and affinity of founder cells shape the diversity of germinal center B cells: a computational study. Front. Immunol. 14, 1080853, https://doi.org/10.3389/fimmu.2023.1080853 (2023).
doi: 10.3389/fimmu.2023.1080853 pubmed: 36993964 pmcid: 10042134
Hill, A. L., Rosenbloom, D. I., Fu, F., Nowak, M. A. & Siliciano, R. F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl Acad. Sci. USA 111, 13475–13480, https://doi.org/10.1073/pnas.1406663111 (2014).
doi: 10.1073/pnas.1406663111 pubmed: 25097264 pmcid: 4169952
Pinkevych, M. et al. HIV Reactivation from latency after treatment interruption occurs on average every 5–8 days-implications for HIV remission. PLoS Pathog. 11, e1005000, https://doi.org/10.1371/journal.ppat.1005000 (2015).
doi: 10.1371/journal.ppat.1005000 pubmed: 26133551 pmcid: 4489624
Ke, R., Lewin, S. R., Elliott, J. H. & Perelson, A. S. Modeling the effects of vorinostat in vivo reveals both transient and delayed HIV transcriptional activation and minimal killing of latently infected cells. PLoS Pathog. 11, e1005237, https://doi.org/10.1371/journal.ppat.1005237 (2015).
doi: 10.1371/journal.ppat.1005237 pubmed: 26496627 pmcid: 4619772
Petravic, J., Rasmussen, T. A., Lewin, S. R., Kent, S. J. & Davenport, M. P. Relationship between measures of HIV reactivation and decline of the latent reservoir under latency-reversing agents. J. Virol. 91, e02092–16, https://doi.org/10.1128/jvi.02092-02016 (2017).
doi: 10.1128/jvi.02092-02016 pubmed: 28202759 pmcid: 5391444
Gupta, V. & Dixit, N. M. Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents. PLoS Comput. Biol. 14, e1006004, https://doi.org/10.1371/journal.pcbi.1006004 (2018).
doi: 10.1371/journal.pcbi.1006004 pubmed: 29451894 pmcid: 5833289
Cao, Y., Lei, X., Ribeiro, R. M., Perelson, A. S. & Liang, J. Probabilistic control of HIV latency and transactivation by the Tat gene circuit. Proc. Natl Acad. Sci. USA 115, 12453–12458, https://doi.org/10.1073/pnas.1811195115 (2018).
doi: 10.1073/pnas.1811195115 pubmed: 30455316 pmcid: 6298123
Conway, J. M. & Coombs, D. A stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients. PLoS Comput. Biol. 7, e1002033, https://doi.org/10.1371/journal.pcbi.1002033 (2011).
doi: 10.1371/journal.pcbi.1002033 pubmed: 21552334 pmcid: 3084212
Rodari, A., Darcis, G. & Van Lint, C. M. The current status of latency reversing agents for HIV-1 remission. Annu Rev. Virol. 8, 491–514, https://doi.org/10.1146/annurev-virology-091919-103029 (2021).
doi: 10.1146/annurev-virology-091919-103029 pubmed: 34586875
Cummins, N. W. et al. Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: a case study. PLoS Med. 14, e1002461, https://doi.org/10.1371/journal.pmed.1002461 (2017).
doi: 10.1371/journal.pmed.1002461 pubmed: 29182633 pmcid: 5705162
Henrich, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327, https://doi.org/10.7326/M14-1027 (2014).
doi: 10.7326/M14-1027 pubmed: 25047577 pmcid: 4236912
Siliciano, J. D. & Siliciano, R. F. HIV cure: the daunting scale of the problem. Science 383, 703–705, https://doi.org/10.1126/science.adk1831 (2024).
doi: 10.1126/science.adk1831 pubmed: 38359111
Lim, S. Y. et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci. Transl. Med. 10, eaao4521, https://doi.org/10.1126/scitranslmed.aao4521 (2018).
doi: 10.1126/scitranslmed.aao4521 pubmed: 29720451 pmcid: 5973480
Kim, J. T. et al. Latency reversal plus natural killer cells diminish HIV reservoir in vivo. Nat. Commun. 13, 121, https://doi.org/10.1038/s41467-021-27647-0 (2022).
doi: 10.1038/s41467-021-27647-0 pubmed: 35013215 pmcid: 8748509
Turk, G. et al. A possible sterilizing cure of HIV-1 infection without stem cell transplantation. Ann. Intern. Med. 175, 95–100, https://doi.org/10.7326/L21-0297 (2021).
doi: 10.7326/L21-0297 pubmed: 34781719 pmcid: 9215120
Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698, https://doi.org/10.1056/NEJMoa0802905 (2009).
doi: 10.1056/NEJMoa0802905 pubmed: 19213682
Gupta, R. K. et al. Evidence for HIV-1 cure after CCR5Delta32/Delta32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7, e340–e347, https://doi.org/10.1016/S2352-3018(20)30069-2 (2020).
doi: 10.1016/S2352-3018(20)30069-2 pubmed: 32169158 pmcid: 7606918
Zhang, Z., Hou, W. & Chen, S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol. Sin. 37, 1–10, https://doi.org/10.1016/j.virs.2022.01.017 (2022).
doi: 10.1016/j.virs.2022.01.017 pubmed: 35234622 pmcid: 8922418
Tebas, P. et al. CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. J. Clin. Invest. 131, e144486, https://doi.org/10.1172/JCI144486 (2021).
doi: 10.1172/JCI144486 pubmed: 33571163 pmcid: 8011906
Fromentin, R. & Chomont, N. HIV persistence in subsets of CD4+ T cells: 50 shades of reservoirs. Semin Immunol. 51, 101438, https://doi.org/10.1016/j.smim.2020.101438 (2021).
doi: 10.1016/j.smim.2020.101438 pubmed: 33272901
Baxter, A. E. et al. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 20, 368–380, https://doi.org/10.1016/j.chom.2016.07.015 (2016).
doi: 10.1016/j.chom.2016.07.015 pubmed: 27545045 pmcid: 5025389
Grau-Exposito, J. et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog. 15, e1007991, https://doi.org/10.1371/journal.ppat.1007991 (2019).
doi: 10.1371/journal.ppat.1007991 pubmed: 31425551 pmcid: 6715238
Fletcher, C. V. et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl Acad. Sci. USA 111, 2307–2312, https://doi.org/10.1073/pnas.1318249111 (2014).
doi: 10.1073/pnas.1318249111 pubmed: 24469825 pmcid: 3926074
Moreno-Gamez, S. et al. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl Acad. Sci. USA 112, E2874–E2883, https://doi.org/10.1073/pnas.1424184112 (2015).
doi: 10.1073/pnas.1424184112 pubmed: 26038564 pmcid: 4460514
Feder, A. F., Harper, K. N., Brumme, C. J. & Pennings, P. S. Understanding patterns of HIV multi-drug resistance through models of temporal and spatial drug heterogeneity. Elife 10, e69032, https://doi.org/10.7554/eLife.69032 (2021).
doi: 10.7554/eLife.69032 pubmed: 34473060 pmcid: 8412921
Rabezanahary, H. et al. Despite early antiretroviral therapy effector memory and follicular helper CD4 T cells are major reservoirs in visceral lymphoid tissues of SIV-infected macaques. Mucosal Immunol. 13, 149–160, https://doi.org/10.1038/s41385-019-0221-x (2020).
doi: 10.1038/s41385-019-0221-x pubmed: 31723251
Estes, J. D. et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 23, 1271–1276, https://doi.org/10.1038/nm.4411 (2017).
doi: 10.1038/nm.4411 pubmed: 28967921 pmcid: 5831193
Reeves, D. B. et al. A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat. Commun. 9, 4811, https://doi.org/10.1038/s41467-018-06843-5 (2018).
doi: 10.1038/s41467-018-06843-5 pubmed: 30446650 pmcid: 6240116
Reeves, D. B. et al. Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence. Nat. Commun. 14, 6145, https://doi.org/10.1038/s41467-023-41521-1 (2023).
doi: 10.1038/s41467-023-41521-1 pubmed: 37783718 pmcid: 10545742
Reeves, D. B. et al. Anti-proliferative therapy for HIV cure: a compound interest approach. Sci. Rep. 7, 4011, https://doi.org/10.1038/s41598-017-04160-3 (2017).
doi: 10.1038/s41598-017-04160-3 pubmed: 28638104 pmcid: 5479830
Kufera, J. T. et al. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J. Exp. Med. 221, e20231511, https://doi.org/10.1084/jem.20231511 (2024).
doi: 10.1084/jem.20231511 pubmed: 38270554 pmcid: 10818065
Kosmrlj, A. et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350–354, https://doi.org/10.1038/nature08997 (2010).
doi: 10.1038/nature08997 pubmed: 20445539 pmcid: 3098720
Mora-Bitria, L. & Asquith, B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 75, 269–282, https://doi.org/10.1007/s00251-023-01293-w (2023).
doi: 10.1007/s00251-023-01293-w pubmed: 36719466 pmcid: 9887252
Boelen, L. et al. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8(+) T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci. Immunol. 3, eaao2892, https://doi.org/10.1126/sciimmunol.aao2892 (2018).
doi: 10.1126/sciimmunol.aao2892 pubmed: 30413420 pmcid: 6277004
Viard, M. et al. Impact of HLA class I functional divergence on HIV control. Science 383, 319–325, https://doi.org/10.1126/science.adk0777 (2024).
doi: 10.1126/science.adk0777 pubmed: 38236978
Vemparala, B. et al. Antiviral capacity of the early CD8 T-cell response is predictive of natural control of SIV infection. https://doi.org/10.1101/2023.10.13.562306 (2023).
Passaes, C. et al. Optimal maturation of the SIV-specific CD8+ T cell response after primary infection is associated with natural control of SIV: ANRS SIC study. Cell Rep. 32, 108174, https://doi.org/10.1016/j.celrep.2020.108174 (2020).
doi: 10.1016/j.celrep.2020.108174 pubmed: 32966788
Sen, P., Saha, A. & Dixit, N. M. You cannot have your synergy and efficacy too. Trends Pharm. Sci. 40, 811–817, https://doi.org/10.1016/j.tips.2019.08.008 (2019).
doi: 10.1016/j.tips.2019.08.008 pubmed: 31610891
Desikan, R., Antia, R. & Dixit, N. M. Physical ‘strength’ of the multi-protein chain connecting immune cells: does the weakest link limit antibody affinity maturation? BioEssays 43, 2000159, https://doi.org/10.1002/bies.202000159 (2021).
doi: 10.1002/bies.202000159
Gubser, C., Chiu, C., Lewin, S. R. & Rasmussen, T. A. Immune checkpoint blockade in HIV. EBioMedicine 76, 103840, https://doi.org/10.1016/j.ebiom.2022.103840 (2022).
doi: 10.1016/j.ebiom.2022.103840 pubmed: 35123267 pmcid: 8882999
Caskey, M. Broadly neutralizing antibodies for the treatment and prevention of HIV infection. Curr. Opin. HIV AIDS 15, 49–55, https://doi.org/10.1097/COH.0000000000000600 (2020).
doi: 10.1097/COH.0000000000000600 pubmed: 31764199 pmcid: 7340121
Chen, Z. & Julg, B. Therapeutic vaccines for the treatment of HIV. Transl. Res. 223, 61–75, https://doi.org/10.1016/j.trsl.2020.04.008 (2020).
doi: 10.1016/j.trsl.2020.04.008 pubmed: 32438074 pmcid: 8188575
Board, N. L., Moskovljevic, M., Wu, F., Siliciano, R. F. & Siliciano, J. D. Engaging innate immunity in HIV-1 cure strategies. Nat. Rev. Immunol. 22, 499–512, https://doi.org/10.1038/s41577-021-00649-1 (2022).
doi: 10.1038/s41577-021-00649-1 pubmed: 34824401
Wensing, A. M. J., Chabannon, C. & Kuball, J. The connected worlds of stem cell transplantation and HIV. Lancet HIV 7, e594–e595, https://doi.org/10.1016/S2352-3018(20)30170-3 (2020).
doi: 10.1016/S2352-3018(20)30170-3 pubmed: 32649867
Mu, W., Carrillo, M. A. & Kitchen, S. G. Engineering CAR T cells to target the HIV reservoir. Front. Cell Infect. Microbiol. 10, 410, https://doi.org/10.3389/fcimb.2020.00410 (2020).
doi: 10.3389/fcimb.2020.00410 pubmed: 32903563 pmcid: 7438537

Auteurs

Bharadwaj Vemparala (B)

Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.

Shreya Chowdhury (S)

Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.

Jérémie Guedj (J)

Université Paris Cité, IAME, INSERM, F-75018, Paris, France.

Narendra M Dixit (NM)

Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India. narendra@iisc.ac.in.
Department of Bioengineering, Indian Institute of Science, Bengaluru, India. narendra@iisc.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH