Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
09 Aug 2024
Historique:
received: 25 01 2024
accepted: 29 06 2024
medline: 10 8 2024
pubmed: 10 8 2024
entrez: 9 8 2024
Statut: aheadofprint

Résumé

To assess the value of deep learning in selecting the optimal embryo for in vitro fertilization, a multicenter, randomized, double-blind, noninferiority parallel-group trial was conducted across 14 in vitro fertilization clinics in Australia and Europe. Women under 42 years of age with at least two early-stage blastocysts on day 5 were randomized to either the control arm, using standard morphological assessment, or the study arm, employing a deep learning algorithm, intelligent Data Analysis Score (iDAScore), for embryo selection. The primary endpoint was a clinical pregnancy rate with a noninferiority margin of 5%. The trial included 1,066 patients (533 in the iDAScore group and 533 in the morphology group). The iDAScore group exhibited a clinical pregnancy rate of 46.5% (248 of 533 patients), compared to 48.2% (257 of 533 patients) in the morphology arm (risk difference -1.7%; 95% confidence interval -7.7, 4.3; P = 0.62). This study was not able to demonstrate noninferiority of deep learning for clinical pregnancy rate when compared to standard morphology and a predefined prioritization scheme. Australian New Zealand Clinical Trials Registry (ANZCTR) registration: 379161 .

Identifiants

pubmed: 39122964
doi: 10.1038/s41591-024-03166-5
pii: 10.1038/s41591-024-03166-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).
doi: 10.1038/s41591-018-0300-7 pubmed: 30617339
Lang, K. et al. Artificial intelligence-supported screen reading versus standard double reading in the mammography screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomized, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 24, 936–944 (2023).
doi: 10.1016/S1470-2045(23)00298-X pubmed: 37541274
Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011).
doi: 10.1093/humrep/der037
Storr, A., Venetis, C. A., Cooke, S., Kilani, S. & Ledger, W. Inter-observer and intra-observer agreement between embryologists during selection of a single day 5 embryo for transfer: a multicentre study. Hum. Reprod. 32, 307–314 (2017).
doi: 10.1093/humrep/dew330 pubmed: 28031323
Steptoe, P. C. & Edwards, R. G. Birth after reimplantation of a human embryo. Lancet 2, 366 (1978).
doi: 10.1016/S0140-6736(78)92957-4 pubmed: 79723
Armstrong, S., Bhide, P., Jordan, V., Pacey, A. & Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 5, CD011320 (2018).
pubmed: 29800485
Salih, M. et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum. Reprod. Open 3, hoad031 (2023).
doi: 10.1093/hropen/hoad031
Dirvanauskas, D., Maskeliunas, R., Raudonis, V. & Damasevicius, R. Embryo development stage prediction algorithm for automated time lapse incubators. Comput. Methods Prog. Biomed. 177, 161–174 (2019).
doi: 10.1016/j.cmpb.2019.05.027
Kragh, M. F., Rimestad, J., Berntsen, J. & Karstoft, H. Automatic grading of human blastocysts from time-lapse imaging. Comput. Biol. Med. 115, 103494 (2019).
doi: 10.1016/j.compbiomed.2019.103494 pubmed: 31630027
Miyagi, Y., Habara, T., Hirata, R. & Hayashi, N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod. Med. Biol. 18, 190–203 (2019).
doi: 10.1002/rmb2.12266 pubmed: 30996683 pmcid: 6452012
VerMilyea, M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 35, 770–784 (2020).
doi: 10.1093/humrep/deaa013 pubmed: 32240301 pmcid: 7192535
Tran, A., Cooke, S., Illingworth, P. J. & Gardner, D. K. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34, 1011–1018 (2019).
doi: 10.1093/humrep/dez064 pubmed: 31111884 pmcid: 6554189
Berntsen, J., Rimestad, J., Lassen, T. J., Tran, D. & Kragh, M. F. Robust and generalizable embryo selection based on artificial intelligence and time-lapse sequences. PLoS ONE 17, e0262661 (2022).
doi: 10.1371/journal.pone.0262661 pubmed: 35108306 pmcid: 8809568
Jiang, V. S. & Bormann, C. L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil. Steril. 120, 17–23 (2023).
doi: 10.1016/j.fertnstert.2023.05.149 pubmed: 37211062
Bormann, C. L. et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113, 781–787 (2020).
doi: 10.1016/j.fertnstert.2019.12.004 pubmed: 32228880 pmcid: 7583085
Payá, E., Bori, L., Colomer, A., Meseguer, M. & Naranjo, V. Automatic characterization of human embryos at day 4 post-insemination from time-lapse imaging using supervised contrastive learning and inductive transfer learning techniques. Comput. Methods Prog. Biomed. 221, 106895 (2022).
doi: 10.1016/j.cmpb.2022.106895
Kieslinger, D. C. et al. Clinical outcomes of uninterrupted embryo culture with or without time-lapse-based embryo selection versus interrupted standard culture (SelecTIMO): a three-armed, multicentre, double-blind, randomised controlled trial. Lancet 401, 1438–1446 (2023).
doi: 10.1016/S0140-6736(23)00168-X pubmed: 37004670
Ahlström, A., Lundin, K. & Lind, A. K. A double-blind randomized controlled trial investigating a time-lapse algorithm for selecting day 5 blastocysts for transfer. Hum. Reprod. 37, 708–717 (2022).
doi: 10.1093/humrep/deac020 pubmed: 35143661
Kim, K. G. Book review: deep learning. Health. Inform. Res. 22, 351 (2016).
doi: 10.4258/hir.2016.22.4.351
Sawada, Y. et al. Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth. Reprod. Biomed. Online 43, 843–852 (2021).
doi: 10.1016/j.rbmo.2021.05.002 pubmed: 34521598
Benchaib, M., Labrune, E., Giscard d’Estaing, S., Salle, B. & Lornage, J. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth. Reprod. Biomed. Online 21, e12486 (2022).
Wang, S., Chen, L. & Sun, H. Interpretable artificial intelligence-assisted embryo selection improved single-blastocyst transfer outcomes: a prospective cohort study. Reprod. Biomed. Online 47, 103371 (2023).
doi: 10.1016/j.rbmo.2023.103371 pubmed: 37839212
Alikani, M., Go, K. J., McCaffrey, C. & McCulloh, D. H. Comprehensive evaluation of contemporary assisted reproduction technology laboratory operations to determine staffing levels that promote patient safety and quality care. Fertil. Steril. 102, 1350–1356 (2014).
doi: 10.1016/j.fertnstert.2014.07.1246 pubmed: 25226853
De Geyter, C. et al. Twenty years of the European IVF-monitoring Consortium registry: what have we learned? A comparison with registries from two other regions. Hum. Reprod. 35, 2832–2849 (2020).
doi: 10.1093/humrep/deaa250 pubmed: 33188410 pmcid: 7744162
McCambridge, J., Witton, J. & Elbourne, D. R. Systematic review of the Hawthorne effect: New concepts are needed to study research participation effects. J. Clin. Epidemiol. 67, 267–277 (2014).
doi: 10.1016/j.jclinepi.2013.08.015 pubmed: 24275499 pmcid: 3969247
Wei, D. et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre randomised controlled trial. Lancet 393, 1310–1318 (2019).
doi: 10.1016/S0140-6736(18)32843-5 pubmed: 30827784
Gardner D. K. & Schoolcraft W. B. in Towards Reproductive Certainty: Infertility and Genetics Beyond (eds Jansen R. & Mortimer D.) 378–388 (Parthenon, 1999).
D’Agostino, R. B. Sr., Massaro, J. M. & Sullivan, L. M. Non-inferiority trials: design concepts and issues – the encounter of academic consultants in statistics. Stat. Med. 22, 169–186 (2003).
doi: 10.1002/sim.1425 pubmed: 12520555
Ueno, S. et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil. Steril. 116, 1172–1180 (2021).
doi: 10.1016/j.fertnstert.2021.06.001 pubmed: 34246469
Cimadomo, D. et al. Towards automation in IVF: pre-clinical validation of a deep learning-based embryo grading system during PGT-A cycles. J. Clin. Med. 12, 1806 (2023).
doi: 10.3390/jcm12051806 pubmed: 36902592 pmcid: 10002983
Ueno, S., Berntsen, J., Ito, M., Okimura, T. & Kato, K. Correlation between an annotation-free embryo scoring system based on deep learning and live birth / neonatal outcomes after single vitrified-warmed blastocyst transfer: a single-centre, large-cohort retrospective study. J. Assist. Reprod. Genet. 39, 2089–2099 (2022).
doi: 10.1007/s10815-022-02562-5 pubmed: 35881272 pmcid: 9475010
Afnan, M. A. M. et al. Interpretable, not black-box, artificial intelligence should be used for embryo selection. Hum. Reprod. Open 2021, hoab040 (2021).
doi: 10.1093/hropen/hoab040 pubmed: 34938903 pmcid: 8687137
Lassen, J. T., Kragh, M. F., Rimestad, J., Johansen, M. N. & Berntsen, J. Development and validation of deep learning based embryo selection across multiple days of transfer. Sci. Rep. 13, 4235 (2023).
doi: 10.1038/s41598-023-31136-3
Hernán, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidem. 183, 758–764 (2016).
doi: 10.1093/aje/kwv254

Auteurs

Peter J Illingworth (PJ)

Virtus Health, Sydney, New South Wales, Australia. peter.illingworth@virtushealth.com.au.

Christos Venetis (C)

IVFAustralia, Sydney, New South Wales, Australia.
Unit for Human Reproduction, 1st Dept of Ob/Gyn, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Centre for Big Data Research in Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.

David K Gardner (DK)

Melbourne IVF, Melbourne, Victoria, Australia.
School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.

Scott M Nelson (SM)

School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK.
TFP Fertility, Institute of Reproductive Sciences, Oxford, UK.

Jørgen Berntsen (J)

Vitrolife, Viby J, Denmark.

Mark G Larman (MG)

Vitrolife, Gothenburg, Sweden.

Franca Agresta (F)

Virtus Health, Melbourne, Victoria, Australia.

Saran Ahitan (S)

TFP Fertility, Nottingham, UK.

Aisling Ahlström (A)

IVIRMA Global Research Alliance, Livio Gothenburg, Gothenburg, Sweden.

Fleur Cattrall (F)

Melbourne IVF, Melbourne, Victoria, Australia.

Simon Cooke (S)

IVFAustralia, Sydney, New South Wales, Australia.

Kristy Demmers (K)

Queensland Fertility Group, Brisbane, Queensland, Australia.

Anette Gabrielsen (A)

The Fertility Unit, Horsens Hospital, Horsens, Denmark.

Johnny Hindkjær (J)

Aagaard, Aarhus, Denmark.

Rebecca L Kelley (RL)

Melbourne IVF, Melbourne, Victoria, Australia.

Charlotte Knight (C)

IVFAustralia, Sydney, New South Wales, Australia.

Lisa Lee (L)

Melbourne IVF, Melbourne, Victoria, Australia.

Robert Lahoud (R)

IVFAustralia, Sydney, New South Wales, Australia.

Manveen Mangat (M)

IVFAustralia, Sydney, New South Wales, Australia.

Hannah Park (H)

Dept of Reproductive Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.

Anthony Price (A)

TFP Fertility, Southampton, UK.

Geoffrey Trew (G)

TFP Fertility, Institute of Reproductive Sciences, Oxford, UK.
Imperial College London, London, UK.

Bettina Troest (B)

The Fertility Unit, Aalborg University Hospital, Aalborg, Denmark.

Anna Vincent (A)

TFP Fertility, Institute of Reproductive Sciences, Oxford, UK.

Susanne Wennerström (S)

IVIRMA Global Research Alliance, Livio Gothenburg, Gothenburg, Sweden.

Lyndsey Zujovic (L)

TFP Fertility, Nottingham, UK.

Thorir Hardarson (T)

Vitrolife, Gothenburg, Sweden.

Classifications MeSH