Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution.

IGF1 body size hormones reptiles sexual size dimorphism

Journal

Evolution & development
ISSN: 1525-142X
Titre abrégé: Evol Dev
Pays: United States
ID NLM: 100883432

Informations de publication

Date de publication:
11 Aug 2024
Historique:
revised: 26 07 2024
received: 29 01 2024
accepted: 26 07 2024
medline: 12 8 2024
pubmed: 12 8 2024
entrez: 12 8 2024
Statut: aheadofprint

Résumé

Ectothermic vertebrates such as reptiles were assumed to be indeterminate growers, which means that there is no terminal point in time or size for growth in their lifetime. In recent years, evidence for the determinate nature of growth in lizards has accumulated, necessitating a re-examination of models of their ontogeny and evolution of sexual size dimorphism (SSD). In the female-larger gecko Paroedura vazimba, we monitored post-embryonic growth over a period of 15 months. After hatching, females grew faster than males but also reached their final body size, that is, closed growth of their vertebrae, earlier than males. The closure of bone growth in females correlates with the onset of reproductive maturation. We compared this pattern with the previously minutely studied, male-larger species Paroedura picta, where we documented determinate growth as well. We propose a model to explain the evolutionary switches in the direction of SSD in lizards based on bipotential effects of ovarian hormones on growth. In this model, male growth is assumed to require no male-specific growth modifier, such as sex-limited hormonal regulators, while growth is feminized by ovarian hormones in females. Low levels of ovarian hormones can promote bone growth, but high levels associated with maturation of the reproductive organs promote senescence of bone growth plates and thus cessation of bone growth. We suggest that models on growth, life-history and evolution of body size in many lizards should acknowledge their determinate nature of growth.

Identifiants

pubmed: 39129398
doi: 10.1111/ede.12490
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12490

Informations de copyright

© 2024 The Author(s). Evolution & Development published by Wiley Periodicals LLC.

Références

Abell, A. J. (1998). The effect of exogenous testosterone on growth and secondary sexual character development in juveniles of Sceloporus virgatus. Herpetologica, 54, 533–543.
Anari, M. R., Bakhtiar, R., Zhu, B., Huskey, S., Franklin, R. B., & Evans, D. C. (2002). Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: Application in trace analysis of ethinylestradiol in rhesus monkey plasma. Analytical Chemistry, 74, 4136–4144. https://doi.org/10.1021/ac025712h
Badyaev, A. V. (2002). Growing apart: An ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology & Evolution, 17, 369–378. https://doi.org/10.1016/S0169-5347(02)02569-7
Bauerová, A., Kratochvíl, L., & Kubička, L. (2020). Little if any role of male gonadal androgens in ontogeny of sexual dimorphism in body size and cranial casque in chameleons. Scientific Reports, 10, 2673. https://doi.org/10.1038/s41598-020-59501-6
Beatty, A. E., & Schwartz, T. S. (2020). Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiological Genomics, 52, 423–434. https://doi.org/10.1152/physiolgenomics.00059.2020
von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32, 217–231. https://doi.org/10.1086/401873
Callewaert, F., Venken, K., Kopchick, J. J., Torcasio, A., van Lenthe, G. H., Boonen, S., & Vanderschueren, D. (2010). Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time‐specific actions of sex steroids and IGF1: Evidence from pubertal mouse models. Journal of Bone and Mineral Research, 25, 617–626. https://doi.org/10.1359/jbmr.090828
Charnov, E. L., Turner, T. F., & Winemiller, K. O. (2001). Reproductive constraints and the evolution of life histories with indeterminate growth. Proceedings of the National Academy of Sciences, 98, 9460–9464. https://doi.org/10.1073/pnas.161294498
Core Team, R. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.Rproject.org/
Cox, C. L., Logan, M. L., Nicholson, D. J., Chung, A. K., Rosso, A. A., McMillan, W. O., & Cox, R. M. (2022). Species‐specific expression of growth‐regulatory genes in 2 anoles with divergent patterns of sexual size dimorphism. Integrative Organismal Biology, 4, obac025. https://doi.org/10.1093/iob/obac025
Cox, R. M. (2006). A test of the reproductive cost hypothesis for sexual size dimorphism in Yarrow's spiny lizard Sceloporus jarrovii. Journal of Animal Ecology, 75, 1361–1369. https://doi.org/10.1111/j.1365-2656.2006.01160.x
Cox, R. M., & Calsbeek, R. (2010). Severe costs of reproduction persist in Anolis lizards despite the evolution of a single‐egg clutch. Evolution, 64, 1321–1330. https://doi.org/10.1111/j.1558-5646.2009.00906.x
Cox, R. M., Cox, C. L., McGlothlin, J. W., Card, D. C., Andrew, A. L., & Castoe, T. A. (2017). Hormonally mediated increases in sex‐biased gene expression accompany the breakdown of between‐sex genetic correlations in a sexually dimorphic lizard. The American Naturalist, 189, 315–332. https://doi.org/10.1086/690105
Cox, R. M., McGlothlin, J. W., & Bonier, F. (2016). Evolutionary endocrinology: Hormones as mediators of evolutionary phenomena: An introduction to the symposium. Integrative and Comperative Biology, 56, 121–125. https://doi.org/10.1093/icb/icw04
Cox, R. M., Skelly, S. L., & John‐Alder, H. B. (2003). A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57, 1653–1669. https://doi.org/10.1111/j.0014-3820.2003.tb00371.x
Cox, R. M., Skelly, S. L., & John‐Alder, H. B. (2005). Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): Implications for energy allocation and sexual size dimorphism. Physiological and Biochemical Zoology, 78, 531–545. https://doi.org/10.1086/430226
Cox, R. M., Stenquist, D. S., & Calsbeek, R. (2009). Testosterone, growth and the evolution of sexual size dimorphism. Journal of Evolutionary Biology, 22, 1586–1598. https://doi.org/10.1111/j.1420-9101.(2009).01772.x
Cox, R. M., Wittman, T. N., & Calsbeek, R. (2022). Reproductive trade‐offs and phenotypic selection change with body condition, but not with predation regime, across island lizard populations. Journal of Evolutionary Biology, 35, 365–378. https://doi.org/10.1111/jeb.13926
Cutler, G. B. (1997). The role of estrogen in bone growth and maturation during childhood and adolescence. The Journal of Steroid Biochemistry and Molecular Biology, 61, 141–144.
Duncan, C. A., Cohick, W. S., & John‐Alder, H. B. (2020). Testosterone reduces growth and hepatic IGF‐1 mRNA in a female‐larger lizard, Sceloporus undulatus: Evidence of an evolutionary reversal in growth regulation. Integrative Organismal Biology, 2, obaa036. https://doi.org/10.1093/iob/obaa036
Duncan, C. A., Jetzt, A. E., Cohick, W. S., & John‐Alder, H. B. (2015). Nutritional modulation of IGF1 in relation to growth and body condition in Sceloporus lizards. General and Comparative Endocrinology, 216, 116–124. https://doi.org/10.1016/j.ygcen.2015.02.009
Farrell, R. E. (Ed.). (2017). Quality control for RNA preparations, In RNA methodologies laboratory guide for isolation and characterization (5th ed., pp. 167–185). Academic Press. https://doi.org/10.1016/C2015-0-04021-7
Frynta, D., Baudyšová, J., Hradcová, P., Faltusová, K., & Kratochvíl, L. (2012). Allometry of sexual size dimorphism in domestic dog. PLoS One, 7, e46125. https://doi.org/10.1371/journal.pone.0046125
Frynta, D., Frýdlová, P., Hnízdo, J., Šimková, O., Cikánová, V., and Velenský, P. (2010) Ontogeny of sexual size dimorphism in monitor lizards: Males grow for a longer period, but not at a faster rate. Zoological Science, 27, 917–923. https://doi.org/10.2108/zsj.27.91
Frýdlová, P., Mrzílková, J., Šeremeta, M., Křemen, J., Dudák, J., Žemlička, J., Minnich, B., Kverková, K., Němec, P., Zach, P., & Frynta, D. (2020). Determinate growth is predominant and likely ancestral in squamate reptiles. Proceedings of the Royal Society B, 287, 28720202737. https://doi.org/10.1098/rspb.2020.2737
Frýdlová, P., Mrzílková, J., Šeremeta, M., Křemen, J., Dudák, J., Žemlička, J., Němec, P., Velenský, P., Moravec, J., Koleška, D., Zahradníčková, V., Jirásek, T., Kodym, P., Frynta, D., & Zach, P. (2019). Universality of indeterminate growth in lizards rejected: The micro‐CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons. Scientific Reports, 9, 18913. https://doi.org/10.1038/s41598-019-54573-5
Glynne, E., & Adams, D. C. (2024). The effect of miniaturization on the evolution of sexual size dimorphism in geckos. Evolution, 78, 1275–1286. https://doi.org/10.1093/evolut/qpae046
Golinski, A., Kubička, L., John‐Alder, H., & Kratochvíl, L. (2014). Elevated testosterone is required for male copulatory behavior and aggression in Madagascar ground gecko (Paroedura picta). General and Comparative Endocrinology, 205, 133–141. https://doi.org/10.1016/j.ygcen.2014.05.012
Gorityala, S., Yang, S., Montano, M. M., & Xu, Y. (2018). Simultaneous determination of dihydrotestosterone and its metabolites in mouse sera by LC‐MS/MS with chemical derivatization. Journal of Chromatography B, 1090, 22–35. https://doi.org/10.1016/j.jchromb.2018.05.008
Hale, M. D., Robinson, C. D., Cox, C. L., & Cox, R. M. (2022). Ontogenetic change in male expression of testosterone‐responsive genes contributes to the emergence of sex‐biased gene expression in Anolis sagrei. Frontiers in Physiology, 13, 886973. https://doi.org/10.3389/fphys.2022.886973
Hayward, A., & Gillooly, J. F. (2011). The cost of sex: Quantifying energetic investment in gamete production by males and females. PLoS One, 6, e16557. https://doi.org/10.1371/journal.pone.0016557
Higashi, T., Nishio, T., Hayashi, N., & Shimada, K. (2007). Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization‐MS. Chemical and Pharmaceutical Bulletin, 55, 662–665. https://doi.org/10.1248/cpb.55.662(10.1021/ac025712h)
Janicke, T., & Fromonteil, S. (2021). Sexual selection and sexual size dimorphism in animals. Biology Letters, 17, 20210251. https://doi.org/10.1098/rsbl.2021.0251
Komsta, L. (2011). outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers
Kratochvil, L., & Frynta, D. (2002). Body size, male combat and the evolution of sexual dimorphism in eublepharid geckos (Squamata: Eublepharidae). Biological Journal of the Linnean Society, 76, 303–314. https://doi.org/10.1111/j.1095-8312.2002.tb02089.x
Kratochvíl, L., & Kubička, L. (2007). Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Functional Ecology, 21, 171–177. https://doi.org/10.1111/j.1365-2435.2006.01202.x
Kubička, L., Golinski, A., John‐Alder, H., & Kratochvíl, L. (2013). Ontogeny of pronounced female‐biased sexual size dimorphism in the Malaysian cat gecko (Aeluroscalabotes felinus: Squamata: Eublepharidae): A test of the role of testosterone in growth regulation. General and Comparative Endocrinology, 188, 183–188. https://doi.org/10.1016/j.ygcen.2013.03.016
Kubička, L., & Kratochvíl, L. (2009). First grow, then breed and finally get fat: Hierarchical allocation to life‐history traits in a lizard with invariant clutch size. Functional Ecology, 23, 595–601. https://doi.org/10.1111/j.1365-2435.2008.01518.x
Kubička, L., Schořálková, T., Červenka, J., & Kratochvíl, L. (2017). Ovarian control of growth and sexual size dimorphism in a male‐larger gecko. The Journal of Experimental Biology, 220, 787–795. https://doi.org/10.1242/jeb.146597
Kubička, L., Starostová, Z., & Kratochvíl, L. (2015). Endogenous control of sexual size dimorphism: Gonadal androgens have neither direct nor indirect effect on male growth in a Madagascar ground gecko (Paroedura picta). General and Comparative Endocrinology, 224, 273–277. https://doi.org/10.1016/j.ygcen.2015.09.028
Kubička, L., Tureček, A., Kučera, T., & Kratochvíl, L. (2022). Sex‐specific growth arrest in a lizard. iScience, 25, 104041. https://doi.org/10.1016/j.isci.2022.104041
Liu, Z., Mohan, S., & Yakar, S. (2016). Does the GH/IGF‐1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies. Growth Hormone & IGF Research, 27, 7–17. https://doi.org/10.1016/j.ghir.2015.12.004
Lodjak, J., & Verhulst, S. (2020). Insulin‐like growth factor 1 of wild vertebrates in a life‐history context. Molecular and Cellular Endocrinology, 518, 110978. https://doi.org/10.1016/j.mce.2020.110978
Marks, J. R., Beatty, A. E., Schwartz, T. S., Sorlin, M., & Lailvaux, S. P. (2021). Expression of insulin‐like growth factors depends on both mass and resource availability in female green anoles (Anolis carolinensis). Journal of Experimental Biology, 224, jeb242665. https://doi.org/10.1242/jeb.242665
Martin, T., Thorbek, P., & Ashauer, R. (2019). Common ground between growth models of rival theories: A useful illustration for beginners. Ecological Modeling, 407, 108712.
Meiri, S., Feldman, A., & Kratochvíl, L. (2015). Squamate hatchling size and the evolutionary causes of negative offspring size allometry. Journal of Evolutionary Biology, 28, 438–446. https://doi.org/10.1111/jeb.12580
Meiri, S., Kadison, A. E., Novosolov, M., Pafilis, P., Foufopoulos, J., Itescu, Y., Raia, P., & Pincheira‐Donoso, D. (2014). The number of competitor species is unlinked to sexual dimorphism. Journal of Animal Ecology, 83, 1302–1312. https://doi.org/10.1111/1365-2656.12248
Meter, B., Kratochvíl, L., Kubička, L., & Starostová, Z. (2022). Development of male‐larger sexual size dimorphism in a lizard: IGF1 peak long after sexual maturity overlaps with pronounced growth in males. Frontiers in Physiology, 13, 917460. https://doi.org/10.3389/fphys.2022.917460
Meter, B., Starostová, Z., Kubička, L., & Kratochvíl, L. (2020). The limits of the energetical perspective: Life‐history decisions in lizard growth. Evolutionary Ecology, 34, 469–481. https://doi.org/10.1007/s10682-020-10054-0
Nilsson, O., Marino, R., de Luca, F., Phillip, M., & Baron, J. (2005). Endocrine regulation of the growth plate. Hormone Research in Paediatrics, 64, 157–165. https://doi.org/10.1159/000088791
Nilsson, O., Weise, M., Landman, E. B. M., Meyers, J. L., Barnes, K. M., & Baron, J. (2014). Evidence that estrogen hastens epiphyseal fusion and cessation of longitudinal bone growth by irreversibly depleting the number of resting zone progenitor cells in female rabbits. Endocrinology, 155, 2892–2899. https://doi.org/10.1210/en.2013-2175
Nussbaum, R. A., & Raxworthy, C. J. (2000). Systematic revision of the genus Paroedura günther (Reptilia: Squamata: Gekkonidae), with description of five new species. Miscellaneous Publications, Museum of Zoology, University of Michigan, 189, 1–26.
Ohlsson, C., Mohan, S., Sjögren, K., Tivesten, A., Isgaard, J., Isaksson, O., Jansson, J. O., & Svensson, J. (2009). The role of liver‐derived insulin‐like growth factor‐I. Endocrine Reviews, 30, 494–535. https://doi.org/10.1210/er.2009-0010
Omeyer, L., Fuller, W., Godley, B., Snape, R., & Broderick, A. (2018). Determinate or indeterminate growth? Revisiting the growth strategy of sea turtles. Marine Ecology Progress Series, 596, 199–211. https://doi.org/10.3354/meps12570
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ, 7, e6876. https://doi.org/10.7717/peerj.6876
Racine, H. L., & Serrat, M. A. (2020). The actions of IGF1 in the growth plate and its role in postnatal bone elongation. Current Osteoporosis Reports, 18, 210–227. https://doi.org/10.1007/s11914-020-00570-x
Raia, P., Guarino, F. M., Turano, M., Polese, G., Rippa, D., Carotenuto, F., Monti, D. M., Cardi, M., & Fulgione, D. (2010). The blue lizard spandrel and the island syndrome. BMC Evolutionary Biology, 10, 289. https://doi.org/10.1186/1471-2148-10-289
Reding, D. M., Addis, E. A., Palacios, M. G., Schwartz, T. S., & Bronikowski, A. M. (2016). Insulin‐like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories. General and Comparative Endocrinology, 233, 88–99. https://doi.org/10.1016/j.ygcen.2016.05.018
Reichard, M., Douda, K., Blažek, R., & Janovská, A. (2023). Increased plasma cortisol level as acute response to glochidia parasitism. Environmental Biology of Fishes, 106, 101–106. https://doi.org/10.1007/s10641-022-01379-6
Reinke, B. A., Cayuela, H., Janzen, F. J., Lemaître, J.‐F., Gaillard, J.‐M., Lawing, A. M., Iverson, J. B., Christiansen, D. G., Martínez‐Solano, I., Sánchez‐Montes, G., Gutiérrez‐Rodríguez, J., Rose, F. L., Nelson, N., Keall, S., Crivelli, A. J., Nazirides, T., Grimm‐Seyfarth, A., Henle, K., Mori, E., & Miller, D. A. W. (2022). Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity. Science, 376, 1459–1466. https://doi.org/10.1126/science.abm0151
RStudio Team. (2019). Integrated Development for R. RStudio, Inc. http://www.rstudio.com/
Scharf, I., Feldman, A., Novosolov, M., Pincheira‐Donoso, D., Das, I., Böhm, M., Uetz, P., Torres‐Carvajal, O., Bauer, A., Roll, U., & Meiri, S. (2015). Late bloomers and baby boomers: Ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography, 24, 396–405. https://doi.org/10.1111/geb.12244.
Schořálková, T., Kratochvíl, L., & Kubička, L. (2018). To fight or mate? Hormonal control of sex recognition, male sexual behavior and aggression in the gecko lizard. Hormones and Behavior, 97, 18–24. https://doi.org/10.1016/j.yhbeh.2017.10.006
Schwartz, T. S., & Bronikowski, A. M. (2016). Evolution and function of the insulin and insulin‐like signaling network in ectothermic reptiles: Some answers and more questions. Integrative and Comparative Biology, 56, 171–184. https://doi.org/10.1093/icb/icw046
Sibly, R. M., & Brown, J. H. (2020). Toward a physiological explanation of juvenile growth curves. Journal of Zoology, 311, 286–290. https://doi.org/10.1111/jzo.12770
Sosvorova, L., Vitku, J., Chlupacova, T., Mohapl, M., & Hampl, R. (2015). Determination of seven selected neuro‐ and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC‐MS/MS. Steroids, 98, 1–8. https://doi.org/10.1016/j.steroids.2015.01.019
Sparkman, A. M., Byars, D., Ford, N. B., & Bronikowski, A. M. (2010). The role of insulin‐like growth factor‐1 (IGF1) in growth and reproduction in female brown house snakes (Lamprophis fuliginosus). General and Comparative Endocrinology, 168, 408–414. https://doi.org/10.1016/j.ygcen.2010.05.006
St Clair, R. C. (1998). Patterns of growth and sexual size dimorphism in two species of box turtles with environmental sex determination. Oecologia, 115, 501–507. https://doi.org/10.1007/s004420050547
Starostová, Z., Kubička, L., Golinski, A., & Kratochvil, L. (2013). Neither male gonadal androgens nor female reproductive costs drive development of sexual size dimorphism in lizards. Journal of Experimental Biology, 216, 1872–1880. https://doi.org/10.1242/jeb.079442
Starostová, Z., Kubička, L., & Kratochvíl, L. (2010). Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature induced variation. Journal of Evolutionary Biology, 23, 670–677. https://doi.org/10.1111/j.1420-9101.(2010).01933.x
Starostová, Z., Píchová, V., Bauerová, A., Kubička, L., & Kratochvíl, L. (2024). Catch‐up growth and overweight adults in the offspring of young gecko mothers resembling low birth weight infants. Biology Letters, 20, 20230452. https://doi.org/10.1098/rsbl.2023.0452
Taylor, E. N., & Denardo, D. F. (2005). Sexual size dimorphism and growth plasticity in snakes: An experiment on the Western diamond‐backed rattlesnake (Crotalus atrox). Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303, 598–607. https://doi.org/10.1002/jez.a.189
Tousignant, A., & Crews, D. (1995). Incubation temperature and gonadal sex affect growth and physiology in the leopard gecko (Eublepharis macularius), a lizard with temperature‐dependent sex determination. Journal of Morphology, 224, 159–170. https://doi.org/10.1002/jmor.1052240205
Vitku, J., Chlupacova, T., Sosvorova, L., Hampl, R., Hill, M., Heracek, J., Bicikova, M. and Starka, L. (2015). Development and validation of LC–MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta, 140, 62–67. https://doi.org/10.1016/j.talanta.2015.03.013
Vitt, L. J., & Caldwell, J. P. (2014). Herpetology: An introductory biology of amphibians and reptiles (4th ed.). Academic Press.
Weise, M., De‐Levi, S., Barnes, K. M., Gafni, R. I., Abad, V., & Baron, J. (2001). Effects of estrogen on growth plate senescence and epiphyseal fusion. Proceedings of the National Academy of Sciences, 98, 6871–6876. https://doi.org/10.1073/pnas.121180498
West, G., Brown, J., & Enquist, B. (2001). A general model for ontogenetic growth. Nature, 413, 628–631. https://doi.org/10.1038/35098076
Wood, S. (2017). Generalized Additive Models: An Introduction with R (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279
Yakar, S., Werner, H., & Rosen, C. J. (2018). 40 Years of IGF1: Insulin‐like growth factors: Actions on the skeleton. Journal of Molecular Endocrinology, 61, T115–T137. https://doi.org/10.1530/JME-17-0298

Auteurs

Brandon Meter (B)

Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.

Lukáš Kratochvíl (L)

Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.

Zuzana Starostová (Z)

Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.

Tomáš Kučera (T)

Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Lukáš Kubička (L)

Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.

Classifications MeSH