Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
12 Aug 2024
12 Aug 2024
Historique:
received:
10
03
2024
accepted:
15
07
2024
medline:
13
8
2024
pubmed:
13
8
2024
entrez:
12
8
2024
Statut:
aheadofprint
Résumé
Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K
Identifiants
pubmed: 39134651
doi: 10.1038/s41559-024-02505-6
pii: 10.1038/s41559-024-02505-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
ID : doi.org/10.37807/GBMF9739
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 787904
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Oren, A. The ecology of extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415–440 (1994).
doi: 10.1111/j.1574-6976.1994.tb00060.x
Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).
pubmed: 29893835
doi: 10.1093/femsre/fuy026
Baker, B. A. et al. Several independent adaptations of archaea to hypersaline environments. Nat. Microbiol 9, 964–975 (2023).
doi: 10.1038/s41564-024-01647-4
Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).
pubmed: 21716304
doi: 10.1038/ismej.2011.78
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).
pubmed: 30181663
doi: 10.1038/s41579-018-0076-2
Dombrowski, N., Lee, J. H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).
pubmed: 30629179
pmcid: 6349945
doi: 10.1093/femsle/fnz008
Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol 2, 17081 (2017).
pubmed: 28555626
pmcid: 5494993
doi: 10.1038/nmicrobiol.2017.81
Zhou, H. et al. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ. Microbiol. 24, 2239–2258 (2022).
pubmed: 35048500
doi: 10.1111/1462-2920.15899
Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348 (1999).
pubmed: 10357854
pmcid: 98969
doi: 10.1128/MMBR.63.2.334-348.1999
Gunde-Cimerman, N., Plemenitaš, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).
pubmed: 29529204
doi: 10.1093/femsre/fuy009
Oren, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315 (2013).
pubmed: 24204364
pmcid: 3817357
doi: 10.3389/fmicb.2013.00315
Harding, T. & Simpson, A. G. B. Recent advances in halophilic protozoa research. J. Eukaryot. Microbiol. 65, 556–570 (2018).
pubmed: 29266533
doi: 10.1111/jeu.12495
Legault, B. A. et al. Environmental genomics of ‘Haloquadratum walsbyi’ in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7, 171 (2006).
pubmed: 16820057
pmcid: 1560387
doi: 10.1186/1471-2164-7-171
Anton, J., Rossello-Mora, R., Rodriguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).
pubmed: 10877805
pmcid: 92110
doi: 10.1128/AEM.66.7.3052-3057.2000
Oren, A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol. Lett. 342, 1–9 (2013).
pubmed: 23373661
doi: 10.1111/1574-6968.12094
Mongodin, E. F. et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).
pubmed: 16330755
pmcid: 1312414
doi: 10.1073/pnas.0509073102
Stevenson, A. et al. Is there a common water-activity limit for the three domains of life? ISME J. 9, 1333–1351 (2015).
pubmed: 25500507
doi: 10.1038/ismej.2014.219
Hallsworth, J. E. et al. Limits of life in MgCl
pubmed: 17298378
doi: 10.1111/j.1462-2920.2006.01212.x
Belilla, J. et al. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol. 3, 1552–1561 (2019).
pubmed: 31666740
pmcid: 6837875
doi: 10.1038/s41559-019-1005-0
Belilla, J. et al. Active microbial airborne dispersal and biomorphs as confounding factors for life detection in the cell-degrading brines of the polyextreme Dallol geothermal field. mBio 13, e0030722 (2022).
pubmed: 35384698
doi: 10.1128/mbio.00307-22
Varet, J. in Geology of Afar (East Africa). Regional Geology Reviews (eds Oberhänsli, R., de Wit, M. J. & Roure, F. M.) Ch. 7, 205–226 (Springer, 2018).
Rime, V., Foubert, A., Ruch, J. & Kidane, T. Tectonostratigraphic evolution and significance of the Afar Depression. Earth Sci. Rev. 244, 104519 (2023).
doi: 10.1016/j.earscirev.2023.104519
Kotopoulou, E. et al. A polyextreme hydrothermal system controlled by iron: the case of Dallol at the Afar Triangle. ACS Earth Space Chem. 3, 90–99 (2019).
pubmed: 30801049
doi: 10.1021/acsearthspacechem.8b00141
López-García, J. M., Moreira, D., Benzerara, K., Grunewald, O. & López-García, P. Origin and evolution of the halo-volcanic complex of Dallol: proto-volcanism in Northern Afar (Ethiopia). Front. Earth Sci. 7, 351 (2020).
doi: 10.3389/feart.2019.00351
Belilla, J. et al. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ. Microbiol. 23, 7168–7182 (2021).
pubmed: 34519149
doi: 10.1111/1462-2920.15771
López-García, P. et al. Metagenome-derived virus-microbe ratios across ecosystems. ISME J. 17, 1552–1156 (2023).
pubmed: 37169871
doi: 10.1038/s41396-023-01431-y
David, G. M. et al. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol. Ecol. 30, 2162–2177 (2021).
pubmed: 33639035
doi: 10.1111/mec.15864
Ghai, R. et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 4, 1154–1166 (2010).
pubmed: 20393571
doi: 10.1038/ismej.2010.44
Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep. 1, 135 (2011).
pubmed: 22355652
pmcid: 3216616
doi: 10.1038/srep00135
Paul, S., Bag, S. K., Das, S., Harvill, E. T. & Dutta, C. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 9, R70 (2008).
pubmed: 18397532
pmcid: 2643941
doi: 10.1186/gb-2008-9-4-r70
Kastritis, P. L., Papandreou, N. C. & Hamodrakas, S. J. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs. Int. J. Biol. Macromol. 41, 447–453 (2007).
pubmed: 17675150
doi: 10.1016/j.ijbiomac.2007.06.005
Tadeo, X. et al. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol. 7, e1000257 (2009).
pubmed: 20016684
pmcid: 2780699
doi: 10.1371/journal.pbio.1000257
Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
pubmed: 11234023
doi: 10.1038/35059215
López-García, P. in Lectures in Astrobiology Vol. I (eds Gargaud, M., Barbier, B., Martin, H. & Reisse, J.) 657–679 (Springer, 2005).
Stetter, K. O. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158 (1996).
doi: 10.1111/j.1574-6976.1996.tb00233.x
Stetter, K. O. Extremophiles and their adaptation to hot environments. FEBS Lett. 452, 22–25 (1999).
pubmed: 10376671
doi: 10.1016/S0014-5793(99)00663-8
Takai, K. et al. Cell proliferation at 122 degrees C and isotopically heavy CH
pubmed: 18664583
pmcid: 2490668
doi: 10.1073/pnas.0712334105
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–d794 (2022).
pubmed: 34520557
doi: 10.1093/nar/gkab776
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).
pubmed: 36218463
pmcid: 9710552
doi: 10.1093/bioinformatics/btac672
Durán-Viseras, A., Sánchez-Porro, C., Viver, T., Konstantinidis, K. T. & Ventosa, A. Discovery of the streamlined haloarchaeon Halorutilus salinus, comprising a new order widespread in hypersaline environments across the world. mSystems 8, e01198–01122 (2023).
pubmed: 36943059
pmcid: 10134839
doi: 10.1128/msystems.01198-22
Vavourakis, C. D. et al. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 7, 211 (2016).
pubmed: 26941731
pmcid: 4766312
Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).
pubmed: 15701695
pmcid: 549018
doi: 10.1073/pnas.0409727102
Darrah, T. H. et al. Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift. Chem. Geol. 339, 16–29 (2013).
doi: 10.1016/j.chemgeo.2012.10.036
Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).
pubmed: 35172890
pmcid: 8851854
doi: 10.1186/s40168-021-01213-8
Beam, J. P. et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).
pubmed: 33013724
pmcid: 7507113
doi: 10.3389/fmicb.2020.01848
La Cono, V. et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc. Natl Acad. Sci. USA 117, 20223–20234 (2020).
pubmed: 32759215
pmcid: 7443923
doi: 10.1073/pnas.2007232117
Reva, O. et al. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Front. Microbiol. 14, 1182464 (2023).
pubmed: 37323909
pmcid: 10266531
doi: 10.3389/fmicb.2023.1182464
Trojan, D. et al. Microaerobic lifestyle at nanomolar O
Torregrosa-Crespo, J. et al. Anaerobic metabolism in haloferax genus: denitrification as case of study. Adv. Microb. Physiol. 68, 41–85 (2016).
pubmed: 27134021
doi: 10.1016/bs.ampbs.2016.02.001
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
pubmed: 23892779
doi: 10.1038/nature12375
Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. Usa. 113, 12792–12796 (2016).
pubmed: 27791118
pmcid: 5111651
doi: 10.1073/pnas.1609534113
Cardoso, R. B. et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95, 1148–1157 (2006).
pubmed: 16807929
doi: 10.1002/bit.21084
Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764 (2006).
pubmed: 16980937
doi: 10.1038/nrmicro1490
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
pubmed: 29398704
doi: 10.1038/nrmicro.2018.9
Albright, M. B. N., Timalsina, B., Martiny, J. B. H. & Dunbar, J. Comparative genomics of nitrogen cycling pathways in bacteria and archaea. Microb. Ecol. 77, 597–606 (2019).
pubmed: 30105504
doi: 10.1007/s00248-018-1239-4
Kappelmann, L. et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 13, 76–91 (2019).
pubmed: 30111868
doi: 10.1038/s41396-018-0242-6
Naumoff, D. G. GHL1-GHL15: new families of the hypothetical glycoside hydrolases. Mol. Biol. 45, 983–992 (2011).
doi: 10.1134/S0026893311060082
Shao, Z. & Wang, W. Enzymes and genes involved in aerobic alkane degradation. Front. Microbiol. 4, 116 (2013).
pubmed: 23755043
pmcid: 3664771
Lapébie, P., Lombard, V., Drula, E., Terrapon, N. & Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 10, 2043 (2019).
pubmed: 31053724
pmcid: 6499787
doi: 10.1038/s41467-019-10068-5
Garron, M. L. & Henrissat, B. The continuing expansion of CAZymes and their families. Curr. Opin. Chem. Biol. 53, 82–87 (2019).
pubmed: 31550558
doi: 10.1016/j.cbpa.2019.08.004
Jeilu, O., Simachew, A., Alexandersson, E., Johansson, E. & Gessesse, A. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Front. Microbiol. 13, 1059061 (2022).
pubmed: 36569080
pmcid: 9768486
doi: 10.3389/fmicb.2022.1059061
Simó-Cabrera, L. et al. Haloarchaea as cell factories to produce bioplastics. Mar. Drugs 19, 159 (2021).
pubmed: 33803653
pmcid: 8003077
doi: 10.3390/md19030159
Jorgensen, B. B. & Boetius, A. Feast and famine–microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).
pubmed: 17828281
doi: 10.1038/nrmicro1745
Favreau, C. et al. Molecular acclimation of Halobacterium salinarum to halite brine inclusions. Front. Microbiol. 13, 1075274 (2022).
pubmed: 36875534
doi: 10.3389/fmicb.2022.1075274
Dal Bello, M., Lee, H., Goyal, A. & Gore, J. Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism. Nat. Ecol. Evol. 5, 1424–1434 (2021).
pubmed: 34413507
doi: 10.1038/s41559-021-01535-8
Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–r1188 (2020).
pubmed: 33022263
doi: 10.1016/j.cub.2020.08.007
Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol 7, 1702–1708 (2022).
pubmed: 36123442
pmcid: 9519449
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063
doi: 10.1093/bioinformatics/btu153
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).
pubmed: 26673716
doi: 10.1093/nar/gkv1344
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 3322381
doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610
pmcid: 3516142
doi: 10.1093/bioinformatics/bts565
Vegan: Community Ecology Package. R package version 1.17-9. R Project http://CRAN.R-project.org/package=vegan (2011).
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
pubmed: 26500826
pmcid: 4614810
doi: 10.7717/peerj.1319
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
pubmed: 25218180
doi: 10.1038/nmeth.3103
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
pubmed: 26336640
pmcid: 4556158
doi: 10.7717/peerj.1165
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
pubmed: 29807988
pmcid: 6786971
doi: 10.1038/s41564-018-0171-1
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
CoverM: read coverage calculator for metagenomics (version 0.7.0). GitHub https://github.com/wwood/CoverM (2024).
Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Preprint at https://doi.org/10.7287/peerj.preprints.1900v1 (2016).
Petitjean, C., Deschamps, P., Lopez-Garcia, P., Moreira, D. & Brochier-Armanet, C. Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life. Mol. Biol. Evol. 32, 1242–1254 (2015).
pubmed: 25660375
doi: 10.1093/molbev/msv015
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
pubmed: 19505945
pmcid: 2712344
doi: 10.1093/bioinformatics/btp348
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823
pmcid: 2835736
doi: 10.1371/journal.pone.0009490
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
pubmed: 32011700
pmcid: 7182206
doi: 10.1093/molbev/msaa015
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).
pubmed: 28968734
doi: 10.1093/bib/bbx108
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
pubmed: 25371430
doi: 10.1093/molbev/msu300
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456
doi: 10.1016/S0168-9525(00)02024-2
R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.r-project.org (2021).
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).
pubmed: 31742321
doi: 10.1093/bioinformatics/btz859
Priest, T., Vidal-Melgosa, S., Hehemann, J.-H., Amann, R. & Fuchs, B. M. Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic. ISME Commun. 3, 130 (2023).
pubmed: 38071398
pmcid: 10710508
doi: 10.1038/s43705-023-00324-7
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).
pubmed: 25853934
pmcid: 4389708
doi: 10.1186/s13059-015-0611-7