Journal

Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643

Informations de publication

Date de publication:
13 Aug 2024
Historique:
received: 05 03 2024
accepted: 16 07 2024
medline: 13 8 2024
pubmed: 13 8 2024
entrez: 12 8 2024
Statut: epublish

Résumé

Precisely defining the delay in onset of dementia is a particular challenge for early diagnosis. Brain [ Longitudinal data for a cohort of patients with no diagnosis of dementia at the time of recruitment referred by a tertiary memory clinic for brain Among the 403 patients (69.9 ± 11.4 years old, 177 women) from the initial cohort with data matched with the NHDS data, 137 were matched with the NAB data, and 61 were matched with LP biomarker data. Within three years of the scan, a A normal brain Clinical Trials database (NCT04804722). March 18, 2021. Retrospectively registered.

Sections du résumé

BACKGROUND BACKGROUND
Precisely defining the delay in onset of dementia is a particular challenge for early diagnosis. Brain [
METHODS METHODS
Longitudinal data for a cohort of patients with no diagnosis of dementia at the time of recruitment referred by a tertiary memory clinic for brain
RESULTS RESULTS
Among the 403 patients (69.9 ± 11.4 years old, 177 women) from the initial cohort with data matched with the NHDS data, 137 were matched with the NAB data, and 61 were matched with LP biomarker data. Within three years of the scan, a
CONCLUSION CONCLUSIONS
A normal brain
TRIAL REGISTRATION BACKGROUND
Clinical Trials database (NCT04804722). March 18, 2021. Retrospectively registered.

Identifiants

pubmed: 39135067
doi: 10.1186/s13195-024-01535-3
pii: 10.1186/s13195-024-01535-3
doi:

Substances chimiques

Fluorodeoxyglucose F18 0Z5B2CJX4D
Biomarkers 0
Amyloid beta-Peptides 0
tau Proteins 0

Banques de données

ClinicalTrials.gov
['NCT04804722']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

182

Informations de copyright

© 2024. The Author(s).

Références

Prince M, Wimo A, Guerchet Maëlenn, Ali G-C, Wu Y-T et al. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. [Research Report] Alzheimer’s Disease International. 2015. 2015.
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.
doi: 10.1016/j.jalz.2018.02.018
Davis M, O`Connell T, Johnson S, Cline S, Merikle E, Martenyi F, et al. Estimating Alzheimer’s Disease Progression Rates from normal cognition through mild cognitive impairment and stages of Dementia. CAR. 2018;15(8):777–88.
doi: 10.2174/1567205015666180119092427
Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–734.
doi: 10.1016/S0140-6736(17)31363-6
Sun BL, Li WW, Zhu C, Jin WS, Zeng F, Liu YH, et al. Clinical Research on Alzheimer’s Disease: Progress and perspectives. Neurosci Bull. 2018;34(6):1111–8.
doi: 10.1007/s12264-018-0249-z pmcid: 6246849
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 2016;12(3):292–323.
doi: 10.1016/j.jalz.2016.02.002
Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20(6):484–96.
doi: 10.1016/S1474-4422(21)00066-1 pmcid: 8339877
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013;1(4).
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, et al. EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. Eur J Nucl Med Mol Imaging. 2022;49(2):632–51.
doi: 10.1007/s00259-021-05603-w
Koric L, Guedj E, Habert MO, Semah F, Branger P, Payoux P, et al. Molecular imaging in the diagnosis of Alzheimer’s disease and related disorders. Rev Neurol. 2016;172(12):725–34.
doi: 10.1016/j.neurol.2016.10.009
Cullen NC, Leuzy A, Janelidze S, Palmqvist S, Svenningsson AL, Stomrud E, et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun. 2021;12(1):3555.
doi: 10.1038/s41467-021-23746-0 pmcid: 8196018
Cotta Ramusino M, Massa F, Festari C, Gandolfo F, Nicolosi V, Orini S et al. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging [Internet]. 2024 Feb 15 [cited 2024 Feb 16]; https://link.springer.com/ https://doi.org/10.1007/s00259-024-06631-y .
the Alzheimer’sDisease Neuroimaging Initiative, Torosyan N, Mason K, Dahlbom M, Silverman DHS. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.
doi: 10.1007/s00259-017-3634-3
Nobili F, Festari C, Altomare D, Agosta F, Orini S, Van Laere K, et al. Automated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disorders. Eur J Nucl Med Mol Imaging. 2018;45(9):1557–66.
doi: 10.1007/s00259-018-4030-3
Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19(11):951–62.
doi: 10.1016/S1474-4422(20)30314-8
Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–95.
doi: 10.1016/j.neurobiolaging.2016.03.033
Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13(5):31.
doi: 10.4103/sja.SJA_543_18
Van Der Gucht A, Verger A, Guedj E, Malandain G, Hossu G, Yagdigul Y, et al. Age-related changes in FDG brain uptake are more accurately assessed when applying an adaptive template to the SPM method of voxel-based quantitative analysis. Ann Nucl Med. 2015;29(10):921–8.
doi: 10.1007/s12149-015-1022-2
Doyen M, Mairal E, Bordonne M, Zaragori T, Roch V, Imbert L, et al. Effect of point spread function deconvolution in Reconstruction of Brain 18F-FDG PET images on the diagnostic thinking efficacy in Alzheimer’s Disease. Front Med (Lausanne). 2021;8:721551.
doi: 10.3389/fmed.2021.721551
Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.
doi: 10.1007/s12021-014-9235-4
Caminiti SP, Sala A, Presotto L, Chincarini A, Sestini S, Perani D, et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. Eur J Nucl Med Mol Imaging. 2021;48(8):2486–99.
doi: 10.1007/s00259-020-05175-1
Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment—a critical update. Front Aging Neurosci [Internet]. 2013 [cited 2023 Nov 27];5. http://journal.frontiersin.org/article/ https://doi.org/10.3389/fnagi.2013.00017/abstract .
Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539–47.
doi: 10.1212/WNL.0000000000002923 pmcid: 4970664
Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46(10):1625–32.
Study Group SEAD-J, Ito K, Fukuyama H, Senda M, Ishii K, Maeda K, et al. Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a Multicenter Study. JAD. 2015;45(2):543–52.
doi: 10.3233/JAD-141338
Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology. 2007;69(9):871–7.
doi: 10.1212/01.wnl.0000269790.05105.16
Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.
doi: 10.1001/jama.286.17.2120
Tripathi M, Tripathi M, Parida GK, Kumar R, Dwivedi S, Nehra A, et al. Biomarker-based prediction of progression to dementia: F-18 FDG-PET in Amnestic MCI. Neurol India. 2019;67(5):1310–7.
doi: 10.4103/0028-3886.271245
Santangelo R, Masserini F, Agosta F, Sala A, Caminiti SP, Cecchetti G, et al. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI ‘imminent’ converters to AD. Eur J Nucl Med Mol Imaging. 2020;47(13):3152–64.
doi: 10.1007/s00259-020-04853-4
Gupta Y, Kim JI, Kim BC, Kwon GR. Classification and graphical analysis of Alzheimer’s Disease and its Prodromal Stage using Multimodal features from Structural, Diffusion, and functional Neuroimaging Data and the APOE genotype. Front Aging Neurosci. 2020;12:238.
doi: 10.3389/fnagi.2020.00238 pmcid: 7406801
Iaccarino L, Sala A, Perani D. The Alzheimer’s Disease Neuroimaging Initiative. Predicting long-term clinical stability in amyloid‐positive subjects by FDG ‐ PET. Ann Clin Transl Neurol. 2019;6(6):1113–20.
doi: 10.1002/acn3.782 pmcid: 6562030
Altomare D, Stampacchia S, Ribaldi F, Tomczyk S, Chevalier C, Poulain G, et al. Plasma biomarkers for Alzheimer’s disease: a field-test in a memory clinic. J Neurol Neurosurg Psychiatry. 2023;94(6):420–7.
doi: 10.1136/jnnp-2022-330619

Auteurs

Sébastien Heyer (S)

Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France.

Maïa Simon (M)

Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France.

Matthieu Doyen (M)

Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France.
Université de Lorraine, IADI, INSERM U1254, Nancy, F-54000, France.

Ali Mortada (A)

Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France.

Véronique Roch (V)

Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France.

Elodie Jeanbert (E)

Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France.

Nathalie Thilly (N)

Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France.

Catherine Malaplate (C)

Department of Biochemistry, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France.

Anna Kearney-Schwartz (A)

Department of Geriatrics, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France.
CMRR, University Hospital Nancy, Nancy, F-54000, France.

Thérèse Jonveaux (T)

CMRR, University Hospital Nancy, Nancy, F-54000, France.
Department of Neurology, University Hospital Nancy, Nancy, F-54000, France.

Aurélie Bannay (A)

Medical Assessment and Information Department, Université de Lorraine, CHRU-Nancy, Nancy, 54000, France.

Antoine Verger (A)

Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France. a.verger@chru-nancy.fr.
Université de Lorraine, IADI, INSERM U1254, Nancy, F-54000, France. a.verger@chru-nancy.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH