The critical dynamics of hippocampal seizures.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 Aug 2024
13 Aug 2024
Historique:
received:
09
07
2023
accepted:
10
07
2024
medline:
14
8
2024
pubmed:
14
8
2024
entrez:
13
8
2024
Statut:
epublish
Résumé
Epilepsy is defined by the abrupt emergence of harmful seizures, but the nature of these regime shifts remains enigmatic. From the perspective of dynamical systems theory, such critical transitions occur upon inconspicuous perturbations in highly interconnected systems and can be modeled as mathematical bifurcations between alternative regimes. The predictability of critical transitions represents a major challenge, but the theory predicts the appearance of subtle dynamical signatures on the verge of instability. Whether such dynamical signatures can be measured before impending seizures remains uncertain. Here, we verified that predictions on bifurcations applied to the onset of hippocampal seizures, providing concordant results from in silico modeling, optogenetics experiments in male mice and intracranial EEG recordings in human patients with epilepsy. Leveraging pharmacological control over neural excitability, we showed that the boundary between physiological excitability and seizures can be inferred from dynamical signatures passively recorded or actively probed in hippocampal circuits. Of importance for the design of future neurotechnologies, active probing surpassed passive recording to decode underlying levels of neural excitability, notably when assessed from a network of propagating neural responses. Our findings provide a promising approach for predicting and preventing seizures, based on a sound understanding of their dynamics.
Identifiants
pubmed: 39138153
doi: 10.1038/s41467-024-50504-9
pii: 10.1038/s41467-024-50504-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6945Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 179929
Organisme : Velux Stiftung (Velux Foundation)
ID : 1232
Informations de copyright
© 2024. The Author(s).
Références
Fiest, K. M. et al. Prevalence and incidence of epilepsy. Neurology 88, 296–303 (2017).
Hauser, W. A. & Beghi, E. First seizure definitions and worldwide incidence and mortality. Epilepsia 49, 8–12 (2008).
pubmed: 18184148
doi: 10.1111/j.1528-1167.2008.01443.x
Lopes Da Silva, F. H. et al. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44, 72–83 (2003).
pubmed: 14641563
doi: 10.1111/j.0013-9580.2003.12005.x
Milton, J. G. & Jung, P. Epilepsy as a dynamic disease. https://doi.org/10.1007/978-3-662-05048-4 . (Springer Berlin, Heidelberg, Berlin, 2003).
Baud, M. O., Proix, T., Rao, V. R. & Schindler, K. Chance and risk in epilepsy. Curr. Opin. Neurol. 33, 163–172 (2020).
Breakspear, M. et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006).
pubmed: 16280462
doi: 10.1093/cercor/bhj072
Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).
pubmed: 24919973
pmcid: 4107736
doi: 10.1093/brain/awu133
Thijs, R. D., Surges, R., O’Brien, T. J. & Sander, J. W. Epilepsy in adults. Lancet 393, 689–701 (2019).
pubmed: 30686584
doi: 10.1016/S0140-6736(18)32596-0
Ma, Z., Turrigiano, G. G., Wessel, R. & Hengen, K. B. Cortical circuit dynamics are homeostatically tuned to criticality in vivo. Neuron 104, 655–664.e4 (2019).
pubmed: 31601510
pmcid: 6934140
doi: 10.1016/j.neuron.2019.08.031
Beggs, J. M. The critically tuned cortex. Neuron 104, 623–624 (2019).
pubmed: 31751539
doi: 10.1016/j.neuron.2019.10.039
Trevelyan, A. J. Do cortical circuits need protecting from themselves? Trends Neurosci. 39, 502–511 (2016).
pubmed: 27378547
doi: 10.1016/j.tins.2016.06.002
Scheffer, M. Critical transitions in nature and society. https://doi.org/10.2307/j.ctv173f1g1 . (Princeton University Press, 2009).
Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
pubmed: 23087241
doi: 10.1126/science.1225244
Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
Chang, W. C. et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 21, 1742–1752 (2018).
pubmed: 30482946
doi: 10.1038/s41593-018-0278-y
Izhikevich, E. M. Dynamical systems in neuroscience: the geometry of excitability and bursting. https://doi.org/10.7551/mitpress/2526.001.0001 . (The MIT Press, 2006).
Saggio, M. L. et al. A taxonomy of seizure dynamotypes. Elife 9, e55632 (2020).
Smith, R. J. et al. Stimulating native seizures with neural resonance: a new approach to localize the seizure onset zone. Brain 145, 3886–3900 (2022).
pubmed: 35703986
pmcid: 10200285
doi: 10.1093/brain/awac214
Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).
doi: 10.1038/nature10723
Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7, e41010 (2012).
Kuehn, C. A mathematical framework for critical transitions: Bifurcations, fastslow systems and stochastic dynamics. Phys. D. 240, 1020–1035 (2011).
doi: 10.1016/j.physd.2011.02.012
Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and winding road. Brain 130, 314–333 (2007).
pubmed: 17008335
doi: 10.1093/brain/awl241
Baud, M. O. et al. Seizure forecasting: bifurcations in the long and winding road. Epilepsia 64, 1–21 (2022).
Milanowski, P. & Suffczynski, P. Seizures start without common signatures of critical transition. Int. J. Neural Syst. 26, 1–15 (2016).
doi: 10.1142/S0129065716500532
Wilkat, T., Rings, T. & Lehnertz, K. No evidence for critical slowing down prior to human epileptic seizures. Chaos 29, 091104 (2019).
Maturana, M. I. et al. Critical slowing down as a biomarker for seizure susceptibility. Nat. Commun. 11, 2172 (2020).
pubmed: 32358560
pmcid: 7195436
doi: 10.1038/s41467-020-15908-3
Meisel, C. & Kuehn, C. Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS One 7, (2012).
Freestone, D. R. et al. Electrical probing of cortical excitability in patients with epilepsy. Epilepsy Behav. 22, S110–S118 (2011).
pubmed: 22078511
doi: 10.1016/j.yebeh.2011.09.005
Kalitzin, S. N. & Velis, D. N. & Lopes da Silva, F. H. Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17, 310–323 (2010).
pubmed: 20163993
doi: 10.1016/j.yebeh.2009.12.023
Suffczynski, P. et al. Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 1–9 (2008).
doi: 10.1103/PhysRevE.78.051917
Kalitzin, S. N., Velis, D. N., Suffczynski, P. & Parra, J. & Lopes da Silva, F. H. Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin. Neurophysiol. 116, 718–728 (2005).
pubmed: 15721087
doi: 10.1016/j.clinph.2004.08.021
Graham, R. T., Parrish, R. R., Alberio, L., Johnson, E. L. & Owens, L. Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis. Brain 146, 2814–2827 (2022).
Kramer, M. A. et al. Human seizures self-terminate across spatial scales via a critical transition. Proc. Natl. Acad. Sci. USA 109, 21116–21121 (2012).
pubmed: 23213262
pmcid: 3529091
doi: 10.1073/pnas.1210047110
Klorig, D. C., Alberto, G. E., Smith, T. & Godwin, D. W. Optogenetically-induced population discharge threshold as a sensitive measure of network excitability. eNeuro 6, ENEURO.0229-18.2019 (2019).
Paschen, E. et al. Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife 9, 1–57 (2020).
doi: 10.7554/eLife.54518
Osawa, S. I. et al. Optogenetically induced seizure and the longitudinal hippocampal network dynamics. PLoS One 8, e60928 (2013).
pubmed: 23593349
pmcid: 3622611
doi: 10.1371/journal.pone.0060928
Khoshkhoo, S., Vogt, D. & Sohal, V. S. Dynamic, cell-type-specific roles for GABAergic interneurons in a mouse model of optogenetically inducible seizures. Neuron 93, 291–298 (2017).
pubmed: 28041880
doi: 10.1016/j.neuron.2016.11.043
Zhang, S.-J. et al. Optogenetic dissection of entorhinal- hippocampal functional connectivity. Science 340, 1232627 (2013).
Wozny, C. et al. Entorhinal cortex entrains epileptiform activity in CA1 in pilocarpine-treated rats. Neurobiol. Dis. 19, 451–460 (2005).
pubmed: 16023587
doi: 10.1016/j.nbd.2005.01.016
Lu, Y. et al. Optogenetic dissection of ictal propagation in the hippocampal-entorhinal cortex structures. Nat. Commun. 7, 10962 (2016).
pubmed: 26997093
pmcid: 4802168
doi: 10.1038/ncomms10962
Cuello Oderiz, C. et al. Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurol. 76, 1070–1078 (2019).
pubmed: 31180505
pmcid: 6563597
doi: 10.1001/jamaneurol.2019.1464
Shiri, Z., Manseau, F., Lévesque, M., Sylvain, W. & Avoli, M. Interneuron activity leads to initiation of low-voltage fast-onset seizures. Ann. Neurol. 77, 541–546 (2014).
Yekhlef, L., Breschi, G. L., Lagostena, L., Russo, G. & Taverna, S. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. J. Neurophysiol. 113, 1616–1630 (2015).
pubmed: 25505119
doi: 10.1152/jn.00841.2014
Chang, M. et al. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiol. Dis. 109, 102–116 (2018).
pubmed: 29024712
doi: 10.1016/j.nbd.2017.10.007
Sessolo, M. et al. Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity. J. Neurosci. 35, 9544–9557 (2015).
pubmed: 26134638
pmcid: 6605139
doi: 10.1523/JNEUROSCI.5117-14.2015
Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).
pubmed: 20081849
doi: 10.1038/nn.2495
Yonekawa, W. D., Kupferberg, H. J. & Woodbury, D. M. Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. J. Pharmacol. Exp. Ther. 214, 589–593 (1980).
pubmed: 7400961
Yoong, Y. L., Lee, H. S., Gwee, M. C. E. & Wong, P. T. ‐H. Acute tolerance to diazepam in mice: pharmacokinetic considerations. Clin. Exp. Pharmacol. Physiol. 13, 153–158 (1986).
Esteller, R., Echauz, J., Tcheng, T., Litt, B. & Pless, B. Line length: an efficient feature for seizure onset detection. In: Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society https://doi.org/10.1109/IEMBS.2001.1020545 (2001).
Devarajan, K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4, e1000029 (2008).
Baud, M. O. et al. Unsupervised learning of spatiotemporal interictal discharges in focal epilepsy. Neurosurgery 83, 683–691 (2018).
pubmed: 29040672
doi: 10.1093/neuros/nyx480
Swinyard, E. A., Brown, W. C. & Goodman, L. S. Comparative assays of antiepileptic drugs in mice and rats. J. Pharm. Exp. Ther. 106, 319–330 (1952).
Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20, 359–368 (2011).
pubmed: 21292505
doi: 10.1016/j.seizure.2011.01.003
Wong, R. K. S. & Prince, D. A. Dendritic mechanisms underlying penicillin-induced epileptiform activity. Science 204, 1228–1231 (1979).
pubmed: 451569
doi: 10.1126/science.451569
Meisel, C. et al. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. USA 112, 14694–14699 (2015).
pubmed: 26554021
pmcid: 4664307
doi: 10.1073/pnas.1513716112
Carvalho, V. R., Moraes, M. F. D., Cash, S. S. & Mendes, E. M. A. M. Active probing to highlight approaching transitions to ictal states in coupled neural mass models. PLoS Comput. Biol. 17, 1–24 (2021).
doi: 10.1371/journal.pcbi.1008377
Nair, D. R. et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 95, E1244–E1256 (2020).
pubmed: 32690786
pmcid: 7538230
doi: 10.1212/WNL.0000000000010154
Vonck, K. & Boon, P. Epilepsy: closing the loop for patients with epilepsy. Nat. Rev. Neurol. 11, 252–254 (2015).
pubmed: 25868392
doi: 10.1038/nrneurol.2015.56
Zhang, M., Riddle, J. & Frohlich, F. Closed-loop control of bistable symptom states. Brain Stimul. 15, 454–456 (2022).
pubmed: 35219926
pmcid: 9286699
doi: 10.1016/j.brs.2022.02.010
Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2020).
Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).
pubmed: 34608328
pmcid: 11219029
doi: 10.1038/s41591-021-01480-w
Jiruska, P., Powell, A. D., Deans, J. K. & Jefferys, J. G. R. Effects of direct brain stimulation depend on seizure dynamics. Epilepsia 51, 93–97 (2010).
pubmed: 20618410
doi: 10.1111/j.1528-1167.2010.02619.x
Karoly, P. J. et al. Cycles in epilepsy. Nat. Rev. Neurol. 17, 267–284 (2021).
Ng, M. & Pavlova, M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res. Treat. 2013, 1–10 (2013).
doi: 10.1155/2013/932790
Mattis, J. et al. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. Elife 11, 1–30 (2022).
doi: 10.7554/eLife.69293
Magloire, V., Cornford, J., Lieb, A., Kullmann, D. M. & Pavlov, I. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat. Commun. 10, 1225 (2019).
pubmed: 30874549
pmcid: 6420604
doi: 10.1038/s41467-019-08933-4
Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).
pubmed: 21796121
pmcid: 4155501
doi: 10.1038/nature10360
Premoli, I. et al. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J. Neurosci. 34, 5603–5612 (2014).
pubmed: 24741050
pmcid: 6608220
doi: 10.1523/JNEUROSCI.5089-13.2014
Roberts, A. J. Modify the improved Euler scheme to integrate stochastic differential equations. ArXiv https://doi.org/10.48550/arXiv.1210.0933 (2012).
Wu, S. et al. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks. Proc. Natl. Acad. Sci. USA 113, 4290–4295 (2016).
pubmed: 27071099
pmcid: 4843452
doi: 10.1073/pnas.1521171113