Characterization of occupational inhalation exposures to particulate and gaseous straight and water-based metalworking fluids.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 08 2024
Historique:
received: 25 03 2024
accepted: 07 08 2024
medline: 14 8 2024
pubmed: 14 8 2024
entrez: 13 8 2024
Statut: epublish

Résumé

Exposure assessments to metalworking fluids (MWF) is difficult considering the complex nature of MWF. This study describes a comprehensive exposure assessment to straight and water-based MWFs among workers from 20 workshops. Metal and organic carbon (OC) content in new and used MWF were determined. Full-shift air samples of inhalable particulate and gaseous fraction were collected and analysed gravimetrically and for metals, OC, and aldehydes. Exposure determinants were ascertained through observations and interviews with workers. Determinants associated with personal inhalable particulate and gaseous fractions were systematically identified using mixed models. Similar inhalable particle exposure was observed for straight and water-based MWFs (64-386 µg/m

Identifiants

pubmed: 39138292
doi: 10.1038/s41598-024-69677-w
pii: 10.1038/s41598-024-69677-w
doi:

Substances chimiques

Particulate Matter 0
Air Pollutants, Occupational 0
Metals 0
Water 059QF0KO0R
Gases 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

18814

Informations de copyright

© 2024. The Author(s).

Références

Park, R. M. Risk assessment for metalworking fluids and respiratory outcomes. Saf. Health Work 10, 428–436. https://doi.org/10.1016/j.shaw.2019.09.001 (2019).
doi: 10.1016/j.shaw.2019.09.001 pubmed: 31890325 pmcid: 6933250
Park, R. M. Risk assessment for metalworking fluids and cancer outcomes. Am. J. Ind. Med. 61, 198–203. https://doi.org/10.1002/ajim.22809 (2018).
doi: 10.1002/ajim.22809 pubmed: 29327473 pmcid: 5824980
Mirabelli, M. C. et al. Metalworking exposures and persistent skin symptoms in the ECRHS II and SAPALDIA 2 cohorts. Contact Dermatitis 60, 256–263. https://doi.org/10.1111/j.1600-0536.2009.01525.x (2009).
doi: 10.1111/j.1600-0536.2009.01525.x pubmed: 19397617 pmcid: 2712133
Colbeth, H. L., Chen, K. T., Picciotto, S., Costello, S. & Eisen, E. A. Exposure to metalworking fluids and cancer incidence in the united auto workers-general motors cohort. Am. J. Epidemiol. 192, 171–181. https://doi.org/10.1093/aje/kwac190 (2023).
doi: 10.1093/aje/kwac190 pubmed: 36305635
Rosenman, K. D. Asthma, hypersensitivity pneumonitis and other respiratory diseases caused by metalworking fluids. Curr. Opin. Allergy Clin. Immunol. 9, 97–102. https://doi.org/10.1097/ACI.0b013e3283229f96 (2009).
doi: 10.1097/ACI.0b013e3283229f96 pubmed: 19307882
Burton, C. M., Crook, B., Scaife, H., Evans, G. S. & Barber, C. M. Systematic review of respiratory outbreaks associated with exposure to water-based metalworking fluids. Ann. Occup. Hyg. 56, 374–388. https://doi.org/10.1093/annhyg/mer121 (2012).
doi: 10.1093/annhyg/mer121 pubmed: 22267130
Barber, C. M., Wiggans, R. E., Carder, M. & Agius, R. Epidemiology of occupational hypersensitivity pneumonitis; reports from the SWORD scheme in the UK from 1996 to 2015. Occup. Environ. Med. 74, 528–530. https://doi.org/10.1136/oemed-2016-103838 (2017).
doi: 10.1136/oemed-2016-103838 pubmed: 27919062
Lai, C. H. et al. Adverse pulmonary impacts of environmental concentrations of oil mist particulate matter in normal human bronchial epithelial cell. Sci. Total Environ. 809, 119. https://doi.org/10.1016/j.scitotenv.2021.151119 (2022).
doi: 10.1016/j.scitotenv.2021.151119
Koller, M. F., Pletscher, C., Scholz, S. M. & Schneuwly, P. Metal working fluid exposure and diseases in Switzerland. Int. J. Occup. Environ. Health 22, 193–200. https://doi.org/10.1080/10773525.2016.1200210 (2016).
doi: 10.1080/10773525.2016.1200210 pubmed: 27373710 pmcid: 5102233
Colin, R., Grzebyk, M., Wild, P., Hedelin, G. & Bourgkard, E. Bladder cancer and occupational exposure to metalworking fluid mist: A counter-matched case-control study in French steel-producing factories. Occup. Environ. Med. 75, 328–336. https://doi.org/10.1136/oemed-2017-104666 (2018).
doi: 10.1136/oemed-2017-104666 pubmed: 29374095
Brinksmeier, E., Meyer, D., Huesmann-Cordes, A. G. & Herrmann, C. Metalworking fluids—Mechanisms and performance. Cirp Ann. Manuf. Technol. 64, 605–628. https://doi.org/10.1016/j.cirp.2015.05.003 (2015).
doi: 10.1016/j.cirp.2015.05.003
ANSES. Les fluides de coupes. Etat des connaissances sur les usages, les expositions et les pratiques de gestion en France 123 (ANSES, 2012).
Osama, M. et al. Recent developments and performance review of metal working fluids. Tribol. Int. 114, 389–401. https://doi.org/10.1016/j.triboint.2017.04.050 (2017).
doi: 10.1016/j.triboint.2017.04.050
Park, D., Stewart, P. A. & Coble, J. B. A comprehensive review of the literature on exposure to metalworking fluids. J. Occup. Environ. Hyg. 6, 530–541. https://doi.org/10.1080/15459620903065984 (2009).
doi: 10.1080/15459620903065984 pubmed: 19544177
Simpson, A. T., Groves, J. A., Unwin, J. & Piney, M. Mineral oil metal working fluids (MWFs)—Development of practical criteria for mist sampling. Ann. Occup. Hyg. 44, 165–172. https://doi.org/10.1016/s0003-4878(99)00085-x (2000).
doi: 10.1016/s0003-4878(99)00085-x pubmed: 10775665
Simpson, A. T. Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids. Appl. Occup. Environ. Hyg. 18, 865–876 (2003).
doi: 10.1080/10473220390237386 pubmed: 14555439
Liu, H. M., Lin, Y. H., Tsai, M. Y. & Lin, W. H. Occurrence and characterization of culturable bacteria and fungi in metalworking environments. Aerobiologia 26, 339–350. https://doi.org/10.1007/s10453-010-9169-8 (2010).
doi: 10.1007/s10453-010-9169-8
Wang, H. X., Reponen, T., Lee, S. A., White, E. & Grinshpun, S. A. Size distribution of airborne mist and endotoxin-containing particles in metalworking fluid environments. J. Occup. Environ. Hyg. 4, 157–165. https://doi.org/10.1080/15459620601144883 (2007).
doi: 10.1080/15459620601144883 pubmed: 17237021
Lillienberg, L., Burdorf, A., Mathiasson, L. & Thorneby, L. Exposure to metalworking fluid aerosols and determinants of exposure. Ann. Occup. Hyg. 52, 597–605. https://doi.org/10.1093/annhyg/men043 (2008).
doi: 10.1093/annhyg/men043 pubmed: 18664515
Suuronen, K., Henriks-Eckerman, M.-L., Riala, R. & Tuomi, T. Respiratory exposure to components of water-miscible metalworking fluids. Ann. Occup. Hyg. 52, 607–614. https://doi.org/10.1093/annhyg/men048 (2008).
doi: 10.1093/annhyg/men048 pubmed: 18678881
Sauvain, J. J. et al. Oxidative potential of aerosolized metalworking fluids in occupational settings. Int. J. Hyg. Environ. Health 235, 775. https://doi.org/10.1016/j.ijheh.2021.113775 (2021).
doi: 10.1016/j.ijheh.2021.113775
Burstyn, I. & Teschke, K. Studying the determinants of exposure: A review of methods. Am. Ind. Hyg. Assoc. J. 60, 57–72. https://doi.org/10.1080/00028899908984423 (1999).
doi: 10.1080/00028899908984423 pubmed: 10028617
Woskie, S. R., Smith, T. J., Hammond, S. K. & Hallock, M. H. Factors affecting worker exposures to metalworking fluids during automotive component manufacturing. Appl. Occup. Environ. Hyg. 9, 612–621. https://doi.org/10.1080/1047322X.1994.10388383 (1994).
doi: 10.1080/1047322X.1994.10388383
Piacitelli, G. M. et al. Metalworking fluid exposures in small machine shops: An overview. AIHAJ 62, 356–370. https://doi.org/10.1202/0002-8894(2001)062%3c0356:mfeism%3e2.0.co;2 (2001).
doi: 10.1202/0002-8894(2001)062<0356:mfeism>2.0.co;2 pubmed: 11434442
Simpson, A. T. et al. Occupational exposure to metalworking fluid mist and sump fluid contaminants. Ann. Occup. Hyg. 47(1), 17–30. https://doi.org/10.1093/annhyg/meg006 (2003).
doi: 10.1093/annhyg/meg006 pubmed: 12505903
Ross, A. S., Teschke, K., Brauer, M. & Kennedy, S. M. Determinants of exposure to metalworking fluid aerosol in small machine shops. Ann. Occup. Hyg. 48, 383–391. https://doi.org/10.1093/annhyg/meh042 (2004).
doi: 10.1093/annhyg/meh042 pubmed: 15240341
Thornburg, J. & Leith, D. Mist generation during metal machining. J. Tribol. Trans. ASME 122, 544–549. https://doi.org/10.1115/1.555399 (2000).
doi: 10.1115/1.555399
Sheehan, M. J. & Hands, D. Metalworking fluid mist—Strategies to reduce exposure: A comparison of new and old transmission case transfer lines. J. Occup. Environ. Hyg. 4, 288–300. https://doi.org/10.1080/15459620701223884 (2007).
doi: 10.1080/15459620701223884 pubmed: 17365501
Thorneus, E. et al. Occupational exposure to metalworking fluid and the effect on health symptoms—An intervention study. J. Occup. Environ. Med. 63, E667–E672. https://doi.org/10.1097/jom.0000000000002327 (2021).
doi: 10.1097/jom.0000000000002327 pubmed: 34310539 pmcid: 8478316
Hopf, N. B. et al. Early effect markers and exposure determinants of metalworking fluids among metal industry workers: Protocol for a field study. J. Med. Internet Res. 8, 12. https://doi.org/10.2196/13744 (2019).
doi: 10.2196/13744
INRS. Fluides d’usinage—Metropol 282 (2016).
Park, D., Stewart, P. A. & Coble, J. B. Determinants of exposure to metalworking fluid aerosols: A literature review and analysis of reported measurements. Ann. Occup. Hyg. 53, 271–288. https://doi.org/10.1093/annhyg/mep005 (2009).
doi: 10.1093/annhyg/mep005 pubmed: 19329796 pmcid: 2662095
Milligan, G. W. & Cooper, M. C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179. https://doi.org/10.1007/bf02294245 (1985).
doi: 10.1007/bf02294245
Peltier, A. E. & Carabin, N. Solubilisation des métaux dans les fluides d’usinage. Etude dans des entreprises françaises 31 (INRS, 2001).
UNEP. (Geneva, 2002).
Franken, A., Eloff, F. C., Du Plessis, J. & Du Plessis, J. L. In vitro permeation of metals through human skin: A review and recommendations. Chem. Res. Toxicol. 28, 2237–2249. https://doi.org/10.1021/acs.chemrestox.5b00421 (2015).
doi: 10.1021/acs.chemrestox.5b00421 pubmed: 26555458
Julander, A., Midander, K., Garcia-Garcia, S., Vihlborg, P. & Graff, P. A case study of brass foundry workers’ estimated lead (Pb) body burden from different exposure routes. Ann. Work Expos. Health 64, 970–981. https://doi.org/10.1093/annweh/wxaa061 (2020).
doi: 10.1093/annweh/wxaa061
Dahlman-Hoglund, A., Schioler, L., Andersson, M., Mattsby-Baltzer, I. & Lindgren, A. Endotoxin in aerosol particles from metalworking fluids measured with a sioutas cascade impactor. Ann. Work Expos. Health 66, 260–268. https://doi.org/10.1093/annweh/wxab077 (2022).
doi: 10.1093/annweh/wxab077
Park, D., Kim, S. & Ha, K. Relationships among fluid ethanolamine formulation, airborne ethanolamines, and aerosol levels in machining operations. Aerosol Air Qual. Res. 12, 553–560. https://doi.org/10.4209/aaqr.2012.01.0002 (2012).
doi: 10.4209/aaqr.2012.01.0002
Pang, X. B. & Lee, X. Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a Mountainous city in Southwest China. Atmos. Environ. 44, 2098–2106. https://doi.org/10.1016/j.atmosenv.2010.03.006 (2010).
doi: 10.1016/j.atmosenv.2010.03.006
Godderis, L., Deschuyffeleer, T., Roelandt, H., Veulemans, H. & Moens, G. Exposure to metalworking fluids and respiratory and dermatological complaints in a secondary aluminium plant. Int. Arch. Occup. Environ. Health 81, 845–853. https://doi.org/10.1007/s00420-007-0275-z (2008).
doi: 10.1007/s00420-007-0275-z pubmed: 17999077
Council, E. P. a. E. (2009).
Standardization, E. C. F. EN 689:2018+AC:2019 E (CEN-CENELEC, 2019).
Protano, C. et al. The carcinogenic effects of formaldehyde occupational exposure: A systematic review. Cancers 14, 165. https://doi.org/10.3390/cancers14010165 (2022).
doi: 10.3390/cancers14010165
White, E. M. & Lucke, W. E. Effects of fluid composition on mist composition. Appl. Occup. Environ. Hyg. 18, 838–841. https://doi.org/10.1080/10473220390237359 (2003).
doi: 10.1080/10473220390237359 pubmed: 14555436

Auteurs

Ronan Levilly (R)

National Research and Safety Institute (INRS), Vandoeuvre Cedex, France.

Jean-Jacques Sauvain (JJ)

Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066, Epalinges-Lausanne, Switzerland. jean-jacques.sauvain@unisante.ch.

Fanny Andre (F)

National Research and Safety Institute (INRS), Vandoeuvre Cedex, France.

Valérie Demange (V)

National Research and Safety Institute (INRS), Vandoeuvre Cedex, France.

Eve Bourgkard (E)

National Research and Safety Institute (INRS), Vandoeuvre Cedex, France.

Pascal Wild (P)

National Research and Safety Institute (INRS), Vandoeuvre Cedex, France.

Nancy B Hopf (NB)

Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066, Epalinges-Lausanne, Switzerland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH