Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity.
Alzheimer's disease
amyloid plaques
astrocytes
astrogliosis
centrin‐2
entorhinal cortex
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
15 Aug 2024
15 Aug 2024
Historique:
revised:
23
07
2024
received:
21
02
2024
accepted:
29
07
2024
medline:
15
8
2024
pubmed:
15
8
2024
entrez:
15
8
2024
Statut:
aheadofprint
Résumé
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Fondazione Pisana per la Scienza, FPS grant 2018
Organisme : ANR
ID : #ANR21-CE17-0047-02
Organisme : Fondo Beneficenza Intesa San Paolo - Brain Bank Project B-2022-0094
Informations de copyright
© 2024 The Author(s). GLIA published by Wiley Periodicals LLC.
Références
Abdul, H. M., Sama, M. A., Furman, J. L., Mathis, D. M., Beckett, T. L., Weidner, A. M., Patel, E. S., Baig, I., Murphy, M. P., LeVine, H., 3rd, Kraner, S. D., & Norris, C. M. (2009). Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. The Journal of Neuroscience, 29(41), 12957–12969.
Acosta, C., Anderson, H. D., & Anderson, C. M. (2017). Astrocyte dysfunction in Alzheimer disease. Journal of Neuroscience Research, 95(12), 2430–2447.
Adav, S. S., & Sze, S. K. (2020). Hypoxia‐induced degenerative protein modifications associated with aging and age‐associated disorders. Aging and Disease, 11(2), 341–364.
Arranz, A. M., & De Strooper, B. (2019). The role of astroglia in Alzheimer's disease: Pathophysiology and clinical implications. Lancet Neurology, 18(4), 406–414.
Association AP. Diagnostic and statistical manual of mental disorders (DSM‐5). American Psychiatric Publishing. 2013.
Beach, T. G., White, C. L., 3rd, Hladik, C. L., Sabbagh, M. N., Connor, D. J., Shill, H. A., Sue, L. I., Sasse, J., Bachalakuri, J., Henry‐Watson, J., Akiyama, H., & Adler, C. H. (2009). Olfactory bulb alpha‐synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathologica, 117(2), 169–174.
Ben Haim, L., Carrillo‐de Sauvage, M. A., Ceyzeriat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 9, 278.
Ben Haim, L., Ceyzeriat, K., Carrillo‐de Sauvage, M. A., Aubry, F., Auregan, G., Guillermier, M., Ruiz, M., Petit, F., Houitte, D., Faivre, E., Vandesquille, M., Aron‐Badin, R., Dhenain, M., Déglon, N., Hantraye, P., Brouillet, E., Bonvento, G., & Escartin, C. (2015). The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. The Journal of Neuroscience, 35(6), 2817–2829.
Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1(1), 11–21.
Boon, B. D. C., Bulk, M., Jonker, A. J., Morrema, T. H. J., van denBerg, E., Popovic, M., Walter, J., Kumar, S., van der Lee, S. J., Holstege, H., Zhu, X., van Nostrand, W. E., Natté, R., van der Weerd, L., Bouwman, F. H., van de Berg, W. D. J., Rozemuller, A. J. M., & Hoozemans, J. J. M. (2020). The coarse‐grained plaque: A divergent Abeta plaque‐type in early‐onset Alzheimer's disease. Acta Neuropathologica, 140(6), 811–830.
Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease‐associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389–404.
Brosseron, F., Maass, A., Kleineidam, L., Ravichandran, K. A., González, P. G., McManus, R. M., Ising, C., Santarelli, F., Kolbe, C. C., Häsler, L. M., Wolfsgruber, S., Marquié, M., Boada, M., Orellana, A., de Rojas, I., Röske, S., Peters, O., Cosma, N. C., Cetindag, A., … DELCODE study group. (2022). Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. Neuron, 110(6), 1009–1022.e4.
Carter, S. F., Schöll, M., Almkvist, O., Wall, A., Engler, H., Långström, B., & Nordberg, A. (2012). Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C‐deuterium‐L‐deprenyl: A multitracer PET paradigm combining 11C‐Pittsburgh compound B and 18F‐FDG. Journal of Nuclear Medicine, 53(1), 37–46.
Ceyzériat, K., Ben Haim, L., Denizot, A., Pommier, D., Matos, M., Guillemaud, O., Palomares, M. A., Abjean, L., Petit, F., Gipchtein, P., Gaillard, M. C., Guillermier, M., Bernier, S., Gaudin, M., Aurégan, G., Joséphine, C., Déchamps, N., Veran, J., Langlais, V., … Escartin, C. (2018). Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathologica Communications, 6(1), 104.
Chun, H., Im, H., Kang, Y. J., Kim, Y., Shin, J. H., Won, W., Lim, J., Ju, Y., Park, Y. M., Kim, S., Lee, S. E., Lee, J., Woo, J., Hwang, Y., Cho, H., Jo, S., Park, J. H., Kim, D., Kim, D. Y., … Lee, C. J. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2− production. Nature Neuroscience, 23(12), 1555–1566.
Chun, H., & Lee, C. J. (2018). Reactive astrocytes in Alzheimer's disease. A double‐edged sword. Neuroscience Research, 126, 44–52.
Craig‐Schapiro, R., Perrin, R. J., Roe, C. M., Xiong, C., Carter, D., Cairns, N. J., Mintun, M. A., Peskind, E. R., Li, G., Galasko, D. R., Clark, C. M., Quinn, J. F., D'Angelo, G., Malone, J. P., Townsend, R. R., Morris, J. C., Fagan, A. M., & Holtzman, D. M. (2010). YKL‐40: A novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biological Psychiatry, 68(10), 903–912.
Cummings, J., Zhou, Y., Lee, G., Zhong, K., Fonseca, J., & Cheng, F. (2023). Alzheimer's disease drug development pipeline: 2023. Alzheimers Dement, 9(2), e12385. https://doi.org/10.1002/trc2.12385. Erratum in: Alzheimers Dement (2023), 9(2), e12407.
Das, S., Li, Z., Noori, A., Hyman, B. T., & Serrano‐Pozo, A. (2020). Meta‐analysis of mouse transcriptomic studies supports a context‐dependent astrocyte reaction in acute CNS injury versus neurodegeneration. Journal of Neuroinflammation, 17(1), 227.
Degl'Innocenti, E., Poloni, T. E., Medici, V., Recupero, L., Dell'Amico, C., Vannini, E., Borello, U., Mazzanti, C. M., Onorati, M., & Dell'Anno, M. T. (2022). Centrin 2: A novel marker of mature and neoplastic human astrocytes. Frontiers in Cellular Neuroscience, 16, 858347.
Delekate, A., Fuchtemeier, M., Schumacher, T., Ulbrich, C., Foddis, M., & Petzold, G. C. (2014). Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model. Nature Communications, 5, 5422.
Dooneief, G., Marder, K., Tang, M. X., & Stern, Y. (1996). The clinical dementia rating scale: Community‐based validation of "profound' and "terminal' stages. Neurology, 46(6), 1746–1749.
Duffy, P. E., Rapport, M., & Graf, L. (1980). Glial fibrillary acidic protein and Alzheimer‐type senile dementia. Neurology, 30(7 Pt 1), 778–782.
Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 378(6619), eadc9020.
Escartin, C., Galea, E., Lakatos, A., O'Callaghan, J. P., Petzold, G. C., Serrano‐Pozo, A., Steinhäuser, C., Volterra, A., Carmignoto, G., Agarwal, A., Allen, N. J., Araque, A., Barbeito, L., Barzilai, A., Bergles, D. E., Bonvento, G., Butt, A. M., Chen, W.‐T., Cohen‐Salmon, M., … Verkhratsky, A. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 24(3), 312–325.
Fakhoury, M. (2018). Microglia and astrocytes in Alzheimer's disease: Implications for therapy. Current Neuropharmacology, 16(5), 508–518.
Fontana, I. C., Scarpa, M., Malarte, M. L., Rocha, F. M., Ausellé‐Bosch, S., Bluma, M., Bucci, M., Chiotis, K., Kumar, A., & Nordberg, A. (2023). Astrocyte signature in Alzheimer's disease continuum through a multi‐PET tracer imaging perspective. Cells, 12(11), 1469.
Frost, G. R., & Li, Y. M. (2017). The role of astrocytes in amyloid production and Alzheimer's disease. Open Biology, 7(12), 170228.
Furman, J. L., & Norris, C. M. (2014). Calcineurin and glial signaling: Neuroinflammation and beyond. Journal of Neuroinflammation, 11, 158.
Gabbouj, S., Ryhänen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Martiskainen, H., Tanila, H., Haapasalo, A., Hiltunen, M., & Natunen, T. (2019). Altered insulin signaling in Alzheimer's disease brain—Special emphasis on PI3K‐Akt pathway. Frontiers in Neurosciene, 13, 629.
Gallart‐Palau, X., Serra, A., Lee, B. S. T., Guo, X., & Sze, S. K. (2017). Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer's disease with cerebrovascular disease. Journal of Neuroinflammation, 14(1), 175.
Garcia‐Marin, V., Garcia‐Lopez, P., & Freire, M. (2007). Cajal's contributions to the study of Alzheimer's disease. Journal of Alzheimer's Disease, 12(2), 161–174.
George, R., Stark, W. H. S., & Moore, S. (1960). Reactions of the cyanate present in aqueous urea with amino acids and proteins. Journal of Biological Chemistry, 235(11), 3177–3181.
Gotz, M., Sirko, S., Beckers, J., & Irmler, M. (2015). Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, in vitro potential, and genome‐wide expression analysis. Glia, 63(8), 1452–1468.
Guaita, A., Colombo, M., Vaccaro, R., Fossi, S., Vitali, S. F., Forloni, G., Polito, L., Davin, A., Ferretti, V. V., & Villani, S. (2013). Brain aging and dementia during the transition from late adulthood to old age: Design and methodology of the "Invece.Ab" population‐based study. BMC Geriatrics, 13, 98.
Guo, Y., You, J., Zhang, Y., Liu, W. S., Huang, Y. Y., Zhang, Y. R., Zhang, W., Dong, Q., Feng, J. F., Cheng, W., & Yu, J. T. (2024). Plasma proteomic profiles predict future dementia in healthy adults. Nature Aging, 4, 247–260.
Guru KrishnaKumar, V., Baweja, L., Ralhan, K., & Gupta, S. (2018). Carbamylation promotes amyloidogenesis and induces structural changes in Tau‐core hexapeptide fibrils. Biochimica et Biophysica Acta ‐ General Subjects, 1862(12), 2590–2604.
Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A. (2021). The amyloid‐beta pathway in Alzheimer's disease. Molecular Psychiatry, 26(10), 5481–5503.
Heimfarth, L., Passos, F. R. S., Monteiro, B. S., Araújo, A. A. S., Quintans Júnior, L. J., & Quintans, J. S. S. (2022). Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease. International Immunopharmacology, 107, 108624.
Heyman, A., Wilkinson, W. E., Hurwitz, B. J., Helms, M. J., Haynes, C. S., Utley, C. M., & Gwyther, L. P. (1987). Early‐onset Alzheimer's disease: Clinical predictors of institutionalization and death. Neurology, 37(6), 980–984.
Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566–572.
Jaisa‐Aad, M., Muñoz‐Castro, C., Healey, M. A., Hyman, B. T., & Serrano‐Pozo, A. (2024). Characterization of monoamine oxidase‐B (MAO‐B) as a biomarker of reactive astrogliosis in Alzheimer's disease and related dementias. Acta Neuropathologica, 147(1), 66.
Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., & Borchelt, D. R. (2004). Mutant presenilins specifically elevate the levels of the 42 residue beta‐amyloid peptide in vivo: Evidence for augmentation of a 42‐specific gamma secretase. Human Molecular Genetics, 13(2), 159–170.
Jo, S., Yarishkin, O., Hwang, Y. J., Chun, Y. E., Park, M., Woo, D. H., Bae, J. Y., Kim, T., Lee, J., Chun, H., Park, H. J., Lee, D. Y., Hong, J., Kim, H. Y., Oh, S. J., Park, S. J., Lee, H., Yoon, B. E., Kim, Y. S., … Lee, C. J. (2014). GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nature Medicine, 20(8), 886–896.
Kabir, F., Atkinson, R., Cook, A. L., Phipps, A. J., & King, A. E. (2022). The role of altered protein acetylation in neurodegenerative disease. Frontiers in Aging Neuroscience, 14, 1025473.
Khakh, B. S., & Sofroniew, M. V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience, 18(7), 942–952.
Klioueva, N. M., Rademaker, M. C., Dexter, D. T., al‐Sarraj, S., Seilhean, D., Streichenberger, N., Schmitz, P., Bell, J. E., Ironside, J. W., Arzberger, T., & Huitinga, I. (2015). BrainNet Europe's code of conduct for brain banking. Journal of Neural Transmission (Vienna), 122(7), 937–940.
Klioueva, N. M., Rademaker, M. C., & Huitinga, I. (2018). Design of a European code of conduct for brain banking. Handbook of Clinical Neurology, 150, 51–81.
Kumar, A., Fontana, I. C., & Nordberg, A. (2023). Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 164(3), 309–324.
Love, S., Chalmers, K., Ince, P., Esiri, M., Attems, J., Jellinger, K., Yamada, M., McCarron, M., Minett, T., Matthews, F., Greenberg, S., Mann, D., & Kehoe, P. G. (2014). Development, appraisal, validation and implementation of a consensus protocol for the assessment of cerebral amyloid angiopathy in post‐mortem brain tissue. American Journal of Neurodegenerative Disease, 3(1), 19–32.
Lutz, W., Lingle, W. L., McCormick, D., Greenwood, T. M., & Salisbury, J. L. (2001). Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. The Journal of Biological Chemistry, 276(23), 20774–20780.
Michetti, F., D'Ambrosi, N., Toesca, A., Puglisi, M. A., Serrano, A., Marchese, E., Corvino, V., & Geloso, M. C. (2019). The S100B story: From biomarker to active factor in neural injury. Journal of Neurochemistry, 148(2), 168–187.
Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., Belle, G., Berg, L., & participating CERAD neuropathologists. (1991). The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology, 41(4), 479–486.
Montine, T. J., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Trojanowski, J. Q., Vinters, H. V., Hyman, B. T., National Institute on Aging, & Alzheimer's Association. (2012). National Institute on Aging‐Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: A practical approach. Acta Neuropathologica, 123(1), 1–11.
Moreno‐Rodriguez, M., Perez, S. E., Nadeem, M., Malek‐Ahmadi, M., & Mufson, E. J. (2020). Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. Journal of Neuroinflammation, 17(1), 58.
Mrak, R. E., & Griffin, W. S. (2005). Glia and their cytokines in progression of neurodegeneration. Neurobiology of Aging, 26(3), 349–354.
Mrak, R. E., & Griffinbc, W. S. (2001). The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease. Neurobiology of Aging, 22(6), 915–922.
Mrak, R. E., Sheng, J. G., & Griffin, W. S. (1996). Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer's disease. Journal of Neuropathology and Experimental Neurology, 55(3), 273–279.
Nelson, P. T., Dickson, D. W., Trojanowski, J. Q., Jack, C. R., Boyle, P. A., Arfanakis, K., Rademakers, R., Alafuzoff, I., Attems, J., Brayne, C., Coyle‐Gilchrist, I. T. S., Chui, H. C., Fardo, D. W., Flanagan, M. E., Halliday, G., Hokkanen, S. R. K., Hunter, S., Jicha, G. A., Katsumata, Y., … Schneider, J. A. (2019). Limbic‐predominant age‐related TDP‐43 encephalopathy (LATE): Consensus working group report. Brain, 142(6), 1503–1527.
Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., & LaFerla, F. M. (2003). Triple‐transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron, 39(3), 409–421.
Ogata, K., & Kosaka, T. (2002). Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience, 113(1), 221–233.
Perez‐Nievas, B. G., & Serrano‐Pozo, A. (2018). Deciphering the astrocyte reaction in Alzheimer's disease. Frontiers in Aging Neuroscience, 10, 114.
Poloni, T. E., Medici, V., Carlos, A. F., Davin, A., Ceretti, A., Mangieri, M., Cassini, P., Vaccaro, R., Zaccaria, D., Abbondanza, S., Bordoni, M., Fantini, V., Fogato, E., Cereda, C., Ceroni, M., & Guaita, A. (2020). Abbiategrasso brain bank protocol for collecting, processing and characterizing aging brains. Journal of Visualized Experiments, 160.
Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer's disease. The New England Journal of Medicine, 362(4), 329–344.
Querol‐Vilaseca, M., Colom‐Cadena, M., Pegueroles, J., San Martín‐Paniello, C., Clarimon, J., Belbin, O., Fortea, J., & Lleó, A. (2016). Calcium signalling toolkits in astrocytes and spatio‐temporal progression of Alzheimer's disease. Current Alzheimer Research, 13(4), 359–369.
Querol‐Vilaseca, M., Colom‐Cadena, M., Pegueroles, J., San Martin‐Paniello, C., Clarimon, J., Belbin, O., Fortea, J., & Lleó, A. (2017). YKL‐40 (chitinase 3‐like I) is expressed in a subset of astrocytes in Alzheimer's disease and other tauopathies. Journal of Neuroinflammation, 14(1), 118.
Reichenbach, N., Delekate, A., Plescher, M., Schmitt, F., Krauss, S., Blank, N., Halle, A., & Petzold, G. C. (2019). Inhibition of Stat3‐mediated astrogliosis ameliorates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 11(2), e9665.
Ren, Z., Yang, M., Guan, Z., & Yu, W. (2019). Astrocytic alpha7 nicotinic receptor activation inhibits amyloid‐beta aggregation by upregulating endogenous alphaB‐crystallin through the PI3K/Akt signaling pathway. Current Alzheimer Research, 16(1), 39–48.
Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata, N., & Saido, T. C. (2014). Single app knock‐in mouse models of Alzheimer's disease. Nature Neuroscience, 17(5), 661–663.
Serrano‐Pozo, A., Gomez‐Isla, T., Growdon, J. H., Frosch, M. P., & Hyman, B. T. (2013). A phenotypic change but not proliferation underlies glial responses in Alzheimer disease. The American Journal of Pathology, 182(6), 2332–2344.
Serrano‐Pozo, A., Mielke, M. L., Gomez‐Isla, T., Betensky, R. A., Growdon, J. H., Frosch, M. P., & Hyman, B. T. (2011). Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease. The American Journal of Pathology, 179(3), 1373–1384.
Serrano‐Pozo, A., Muzikansky, A., Gomez‐Isla, T., Growdon, J. H., Betensky, R. A., Frosch, M. P., & Hyman, B. T. (2013). Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 72(6), 462–471.
Simpson, J. E., Ince, P. G., Shaw, P. J., Heath, P. R., Raman, R., Garwood, C. J., Gelsthorpe, C., Baxter, L., Forster, G., Matthews, F. E., Brayne, C., Wharton, S. B., & MRC Cognitive Function and Ageing Neuropathology Study Group. (2011). Microarray analysis of the astrocyte transcriptome in the aging brain: Relationship to Alzheimer's pathology and APOE genotype. Neurobiology of Aging, 32(10), 1795–1807.
Skrobot, O. A., Attems, J., Esiri, M., Hortobagyi, T., Ironside, J. W., Kalaria, R. N., King, A., Lammie, G. A., Mann, D., Neal, J., Ben‐Shlomo, Y., Kehoe, P. G., & Love, S. (2016). Vascular cognitive impairment neuropathology guidelines (VCING): The contribution of cerebrovascular pathology to cognitive impairment. Brain, 139(11), 2957–2969.
Thal, D. R., Rüb, U., Schultz, C., Sassin, I., Ghebremedhin, E., Del Tredici, K., Braak, E., & Braak, H. (2000). Sequence of Abeta‐protein deposition in the human medial temporal lobe. Journal of Neuropathology & Experimental Neurology, 59(8), 733–748.
Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of a beta‐deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800.
Thal, D. R., Rüb, U., Schultz, C., Sassin, I., Ghebremedhin, E., delTredici, K., Braak, E., & Braak, H. (2016). Protein carbamylation is a hallmark of aging. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1191–1196.
Verkhratsky, A. (2019). Astroglial calcium signaling in aging and Alzheimer's disease. Cold Spring Harbor Perspectives in Biology, 11(7), a035188.
Verkhratsky, A., Augusto‐Oliveira, M., Pivoriunas, A., Popov, A., Brazhe, A., & Semyanov, A. (2021). Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflügers Archiv, 473(5), 753–774.
Verkhratsky, A., Rodriguez‐Arellano, J. J., Parpura, V., & Zorec, R. (2017). Astroglial calcium signalling in Alzheimer's disease. Biochemical and Biophysical Research Communications, 483(4), 1005–1012.
Wang, Z., Nicholls, S. J., Rodriguez, E. R., Kummu, O., Horkko, S., Barnard, J., Reynolds, W. F., Topol, E. J., DiDonato, J. A., & Hazen, S. L. (2007). Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature Medicine, 13(10), 1176–1184.
Zhang, H., Ng, K. P., Therriault, J., Kang, M. S., Pascoal, T. A., Rosa‐Neto, P., Gauthier, S., & Alzheimer's Disease Neuroimaging Initiative. (2018). Cerebrospinal fluid phosphorylated tau, visinin‐like protein‐1, and chitinase‐3‐like protein 1 in mild cognitive impairment and Alzheimer's disease. Translational Neurodegeneration, 7, 23.
Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D., Vogel, H., Steinberg, G. K., Edwards, M. S. B., Li, G., Duncan, J. A., III, Cheshier, S. H., Shuer, L. M., Chang, E. F., Grant, G. A., Gephart, M. G. H., & Barres, B. A. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron, 89(1), 37–53.