In-silico heart model phantom to validate cardiac strain imaging.


Journal

bioRxiv : the preprint server for biology
ISSN: 2692-8205
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
07 Aug 2024
Historique:
medline: 16 8 2024
pubmed: 16 8 2024
entrez: 16 8 2024
Statut: epublish

Résumé

The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.

Identifiants

pubmed: 39149320
doi: 10.1101/2024.08.05.606672
pmc: PMC11326205
pii:
doi:

Types de publication

Journal Article Preprint

Langues

eng

Auteurs

Classifications MeSH