Luteinizing Hormone Receptor Mutation (LHR
Follicle
Granulosa cells
LHRN316S
Oocytes
Progesterone
Single cell RNA-seq
Journal
Interdisciplinary sciences, computational life sciences
ISSN: 1867-1462
Titre abrégé: Interdiscip Sci
Pays: Germany
ID NLM: 101515919
Informations de publication
Date de publication:
16 Aug 2024
16 Aug 2024
Historique:
received:
24
12
2023
accepted:
22
07
2024
revised:
17
07
2024
medline:
16
8
2024
pubmed:
16
8
2024
entrez:
16
8
2024
Statut:
aheadofprint
Résumé
Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHR
Identifiants
pubmed: 39150470
doi: 10.1007/s12539-024-00646-7
pii: 10.1007/s12539-024-00646-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Key Research and Development Program of Ningxia Hui Autonomous Region
ID : 2022BFH02004
Organisme : the interdisciplinary program of Shanghai Jiao Tong University
ID : ZH2018ZDA31
Informations de copyright
© 2024. The Author(s).
Références
Kidder GM, Vanderhyden BC (2010) Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 88:399–413. https://doi.org/10.1139/y10-009
doi: 10.1139/y10-009
pubmed: 20555408
pmcid: 3025001
Dupont J, Scaramuzzi RJ (2016) Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 473:1483–1501. https://doi.org/10.1042/BCJ20160124
doi: 10.1042/BCJ20160124
pubmed: 27234585
Brunet S, Maro B (2007) Germinal vesicle position and meiotic maturation in mouse oocyte. Reproduction 133:1069–1072. https://doi.org/10.1530/REP-07-0036
doi: 10.1530/REP-07-0036
pubmed: 17636161
Barrett SL, Albertini DF (2010) Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet 27:29–39. https://doi.org/10.1007/s10815-009-9376-9
doi: 10.1007/s10815-009-9376-9
pubmed: 20039198
Gittens JE, Barr KJ, Vanderhyden BC et al (2005) Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cell Sci 118:113–122. https://doi.org/10.1242/jcs.01587
doi: 10.1242/jcs.01587
pubmed: 15585573
Pelland AM, Corbett HE, Baltz JM (2009) Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol Reprod 81:1041–1054. https://doi.org/10.1095/biolreprod.109.079046
doi: 10.1095/biolreprod.109.079046
pubmed: 19605782
pmcid: 2844491
Su YQ, Sugiura K, Wigglesworth K et al (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121. https://doi.org/10.1242/dev.009068
doi: 10.1242/dev.009068
pubmed: 18045843
Fan HY, Liu Z, Cahill N et al (2008) Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 22:2128–2140. https://doi.org/10.1210/me.2008-0095
doi: 10.1210/me.2008-0095
pubmed: 18606860
pmcid: 2631369
Kawamura K, Cheng Y, Suzuki N et al (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA 110:17474–17479. https://doi.org/10.1073/pnas.1312830110
doi: 10.1073/pnas.1312830110
pubmed: 24082083
pmcid: 3808580
Nagashima T, Kim J, Li Q et al (2011) Connective tissue growth factor is required for normal follicle development and ovulation. Mol Endocrinol 25:1740–1759. https://doi.org/10.1210/me.2011-1045
doi: 10.1210/me.2011-1045
pubmed: 21868453
pmcid: 3182424
Wigglesworth K, Lee KB, Emori C et al (2015) Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 92:23. https://doi.org/10.1095/biolreprod.114.121756
doi: 10.1095/biolreprod.114.121756
pubmed: 25376232
Chen J, Torcia S, Xie F et al (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423. https://doi.org/10.1038/ncb2873
doi: 10.1038/ncb2873
pubmed: 24270888
pmcid: 4066669
Hummitzsch K, Anderson RA, Wilhelm D et al (2015) Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 36:65–91. https://doi.org/10.1210/er.2014-1079
doi: 10.1210/er.2014-1079
pubmed: 25541635
Diaz FJ, Wigglesworth K, Eppig JJ (2007) Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci 120:1330–1340. https://doi.org/10.1242/jcs.000968
doi: 10.1242/jcs.000968
pubmed: 17389684
Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838. https://doi.org/10.1530/rep.0.1220829
doi: 10.1530/rep.0.1220829
pubmed: 11732978
Hussein TS, Thompson JG, Gilchrist RB (2006) Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol 296:514–521. https://doi.org/10.1016/j.ydbio.2006.06.026
doi: 10.1016/j.ydbio.2006.06.026
pubmed: 16854407
Su YQ, Wu X, O’Brien MJ et al (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73. https://doi.org/10.1016/j.ydbio.2004.08.020
doi: 10.1016/j.ydbio.2004.08.020
pubmed: 15531364
Zhang Y, Yan Z, Qin Q et al (2018) Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell 72(1021–1034):e4. https://doi.org/10.1016/j.molcel.2018.10.029
doi: 10.1016/j.molcel.2018.10.029
Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12:362–375. https://doi.org/10.1038/nrm3117
doi: 10.1038/nrm3117
pubmed: 21587297
pmcid: 3245550
Cavenagh MM, Whitney JA, Carroll K et al (1996) Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem 271:21767–21774. https://doi.org/10.1074/jbc.271.36.21767
doi: 10.1074/jbc.271.36.21767
pubmed: 8702973
Duan X, Zhang HL, Pan MH et al (2018) Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis. Biochim Biophys Acta Mol Cell Res 1865:455–462. https://doi.org/10.1016/j.bbamcr.2017.11.016
doi: 10.1016/j.bbamcr.2017.11.016
pubmed: 29208529
Claing A (2004) Regulation of G protein-coupled receptor endocytosis by ARF6 GTP-binding proteins. Biochem Cell Biol 82:610–617. https://doi.org/10.1139/o04-113
doi: 10.1139/o04-113
pubmed: 15674428
Suzuki T, Kanai Y, Hara T et al (2006) Crucial role of the small GTPase ARF6 in hepatic cord formation during liver development. Mol Cell Biol 26:6149–6156. https://doi.org/10.1128/MCB.00298-06
doi: 10.1128/MCB.00298-06
pubmed: 16880525
pmcid: 1592812
Breen SM, Andric N, Ping T et al (2013) Ovulation involves the luteinizing hormone-dependent activation of G(q/11) in granulosa cells. Mol Endocrinol 27:1483–1491. https://doi.org/10.1210/me.2013-1130
doi: 10.1210/me.2013-1130
pubmed: 23836924
pmcid: 3753423
Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23:141–174. https://doi.org/10.1210/edrv.23.2.0462
doi: 10.1210/edrv.23.2.0462
pubmed: 11943741
Themmen AP (2005) An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction 130:263–274. https://doi.org/10.1530/rep.1.00663
doi: 10.1530/rep.1.00663
pubmed: 16123233
Lindgren I, Nenonen H, Henic E et al (2019) Gonadotropin receptor variants are linked to cumulative live birth rate after in vitro fertilization. J Assist Reprod Genet 36:29–38. https://doi.org/10.1007/s10815-018-1318-y
doi: 10.1007/s10815-018-1318-y
pubmed: 30232643
Nagulapalli A, Vembu R, Pandurangi M et al (2023) Luteinizing hormone/human chorionic gonadotropin receptor N312S single-nucleotide polymorphism and its impact on clinical and reproductive outcomes in assisted reproductive technology: a prospective cohort study. Cureus 15:e47217. https://doi.org/10.7759/cureus.47217
doi: 10.7759/cureus.47217
pubmed: 38022167
pmcid: 10652146
Pirtea P, de Ziegler D, Marin D et al (2022) Gonadotropin receptor polymorphisms (FSHR N680S and LHCGR N312S) are not predictive of clinical outcome and live birth in assisted reproductive technology. Fertil Steril 118:494–503. https://doi.org/10.1016/j.fertnstert.2022.06.011
doi: 10.1016/j.fertnstert.2022.06.011
pubmed: 35842313
Jin H, Yang H, Zheng J et al (2023) Post-trigger luteinizing hormone concentration to positively predict oocyte yield in the antagonist protocol and its association with genetic variants of LHCGR. J Ovarian Res 16:189. https://doi.org/10.1186/s13048-023-01271-6
doi: 10.1186/s13048-023-01271-6
pubmed: 37691102
pmcid: 10494325
Xue ZG, Huang K, Cai CC et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597. https://doi.org/10.1038/nature12364
doi: 10.1038/nature12364
pubmed: 23892778
pmcid: 4950944
Pujana MA, Han JDJ, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349. https://doi.org/10.1038/ng.2007.2
doi: 10.1038/ng.2007.2
pubmed: 17922014
Prieto C, Risueno A, Fontanillo C et al (2008) Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS ONE 3:e3911. https://doi.org/10.1371/journal.pone.0003911
doi: 10.1371/journal.pone.0003911
pubmed: 19081792
pmcid: 2597745
Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. https://doi.org/10.1038/nrg1272
doi: 10.1038/nrg1272
pubmed: 14735121
Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556
doi: 10.1038/75556
pubmed: 10802651
pmcid: 3037419
Dupont J, Reverchon M, Cloix L et al (2012) Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer. Int J Dev Biol 56:959–967. https://doi.org/10.1387/ijdb.120134jd
doi: 10.1387/ijdb.120134jd
pubmed: 23417417
Shao YJ, Guan YT, Wang LR et al (2014) CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 9:2493–2512. https://doi.org/10.1038/nprot.2014.171
doi: 10.1038/nprot.2014.171
pubmed: 25255092
Packer AI, Hsu YC, Besmer P et al (1994) The ligand of the c-kit receptor promotes oocyte growth. Dev Biol 161:194–205. https://doi.org/10.1006/dbio.1994.1020
doi: 10.1006/dbio.1994.1020
pubmed: 7507447
Ye Y, Kawamura K, Sasaki M et al (2009) Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes. Reprod Biol Endocrinol 7:26. https://doi.org/10.1186/1477-7827-7-26
doi: 10.1186/1477-7827-7-26
pubmed: 19341483
pmcid: 2676294
Hsueh AJ (2014) Fertility: the role of mTOR signaling and KIT ligand. Curr Biol 24:R1040–R1042. https://doi.org/10.1016/j.cub.2014.09.033
doi: 10.1016/j.cub.2014.09.033
pubmed: 25517366
Jagarlamudi K, Rajkovic A (2012) Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 356:31–39. https://doi.org/10.1016/j.mce.2011.07.049
doi: 10.1016/j.mce.2011.07.049
pubmed: 21856374
Jones RL, Pepling ME (2013) KIT signaling regulates primordial follicle formation in the neonatal mouse ovary. Dev Biol 382:186–197. https://doi.org/10.1016/j.ydbio.2013.06.030
doi: 10.1016/j.ydbio.2013.06.030
pubmed: 23831378
Morohaku K, Tanimoto R, Sasaki K et al (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc Natl Acad Sci USA 113:9021–9026. https://doi.org/10.1073/pnas.1603817113
doi: 10.1073/pnas.1603817113
pubmed: 27457928
pmcid: 4987791
Davies JC, Tamaddon-Jahromi S, Jannoo R et al (2014) Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochem Pharmacol 92:651–660. https://doi.org/10.1016/j.bcp.2014.09.023
doi: 10.1016/j.bcp.2014.09.023
pubmed: 25450674
Lees-Murdock DJ, Lau HT, Castrillon DH et al (2008) DNA methyltransferase loading, but not de novo methylation, is an oocyte-autonomous process stimulated by SCF signalling. Dev Biol 321:238–250. https://doi.org/10.1016/j.ydbio.2008.06.024
doi: 10.1016/j.ydbio.2008.06.024
pubmed: 18616936
Salvador LM, Mukherjee S, Kahn RA et al (2001) Activation of the luteinizing hormone/choriogonadotropin hormone receptor promotes ADP ribosylation factor 6 activation in porcine ovarian follicular membranes. J Biol Chem 276:33773–33781. https://doi.org/10.1074/jbc.M101498200
doi: 10.1074/jbc.M101498200
pubmed: 11448949
Mukherjee S, Gurevich VV, Jones JC et al (2000) The ADP ribosylation factor nucleotide exchange factor ARNO promotes beta-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. Proc Natl Acad Sci USA 97:5901–5906. https://doi.org/10.1073/pnas.100127097
doi: 10.1073/pnas.100127097
pubmed: 10811902
pmcid: 18531
Lindgren I, Baath M, Uvebrant K et al (2016) Combined assessment of polymorphisms in the LHCGR and FSHR genes predict chance of pregnancy after in vitro fertilization. Hum Reprod 31:672–683. https://doi.org/10.1093/humrep/dev342
doi: 10.1093/humrep/dev342
pubmed: 26769719
Comazzetto S, Murphy MM, Berto S et al (2019) Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24(477–486):e6. https://doi.org/10.1016/j.stem.2018.11.022
doi: 10.1016/j.stem.2018.11.022
Lennartsson J, Ronnstrand L (2012) Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 92:1619–1649. https://doi.org/10.1152/physrev.00046.2011
doi: 10.1152/physrev.00046.2011
pubmed: 23073628
Liu JC, Yan ZH, Li B et al (2021) Di (2-ethylhexyl) phthalate impairs primordial follicle assembly by increasing PDE3A expression in oocytes. Environ Pollut 270:116088. https://doi.org/10.1016/j.envpol.2020.116088
doi: 10.1016/j.envpol.2020.116088
pubmed: 33234378
Thomas FH, Vanderhyden BC (2006) Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol 4:19. https://doi.org/10.1186/1477-7827-4-19
doi: 10.1186/1477-7827-4-19
pubmed: 16611364
pmcid: 1481519
Otsuka F, Shimasaki S (2002) A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci USA 99:8060–8065. https://doi.org/10.1073/pnas.122066899
doi: 10.1073/pnas.122066899
pubmed: 12048244
pmcid: 123020
Otsuka F, Yao Z, Lee T et al (2000) Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 275:39523–39528. https://doi.org/10.1074/jbc.M007428200
doi: 10.1074/jbc.M007428200
pubmed: 10998422
Celik S, Ozkavukcu S, Celik-Ozenci C (2020) Altered expression of activator proteins that control follicle reserve after ovarian tissue cryopreservation/transplantation and primordial follicle loss prevention by rapamycin. J Assist Reprod Genet 37:2119–2136. https://doi.org/10.1007/s10815-020-01875-7
doi: 10.1007/s10815-020-01875-7
pubmed: 32651677
pmcid: 7492284
Sun SC, Sun QY, Kim NH (2011) JMY is required for asymmetric division and cytokinesis in mouse oocytes. Mol Hum Reprod 17:296–304. https://doi.org/10.1093/molehr/gar006
doi: 10.1093/molehr/gar006
pubmed: 21266449
Li H, Guo F, Rubinstein B et al (2008) Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nat Cell Biol 10:1301–1308. https://doi.org/10.1038/ncb1788
doi: 10.1038/ncb1788
pubmed: 18836438
Kanamarlapudi V, Thompson A, Kelly E et al (2012) ARF6 activated by the LHCG receptor through the cytohesin family of guanine nucleotide exchange factors mediates the receptor internalization and signaling. J Biol Chem 287:20443–20455. https://doi.org/10.1074/jbc.M112.362087
doi: 10.1074/jbc.M112.362087
pubmed: 22523074
pmcid: 3370224
Rivron NC, Frias-Aldeguer J, Vrij EJ et al (2018) Blastocyst-like structures generated solely from stem cells. Nature 557:106–111. https://doi.org/10.1038/s41586-018-0051-0
doi: 10.1038/s41586-018-0051-0
pubmed: 29720634
Chian RC, Ao A, Clarke HJ et al (1999) Production of steroids from human cumulus cells treated with different concentrations of gonadotropins during culture in vitro. Fertil Steril 71:61–66. https://doi.org/10.1016/s0015-0282(98)00416-6
doi: 10.1016/s0015-0282(98)00416-6
pubmed: 9935117
Shimada M, Terada T (2002) FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells: a requirement for meiotic resumption in porcine oocytes. Mol Hum Reprod 8:612–618. https://doi.org/10.1093/molehr/8.7.612
doi: 10.1093/molehr/8.7.612
pubmed: 12087075
Cavalieri J (2019) Absence of a corpus luteum and relatively lesser concentrations of progesterone during the period of pre-ovulatory follicle emergence results in lesser pregnancy rates in Bos indicus cattle. Anim Reprod Sci 204:39–49. https://doi.org/10.1016/j.anireprosci.2019.03.003
doi: 10.1016/j.anireprosci.2019.03.003
pubmed: 30853120
Gaur M, Purohit GN (2019) Follicular dynamics and colour Doppler vascularity evaluations of follicles and corpus luteum in relation to plasma progesterone during the oestrous cycle of Surti buffaloes. Reprod Domest Anim 54:585–594. https://doi.org/10.1111/rda.13400
doi: 10.1111/rda.13400
pubmed: 30614085
Simon C, Branet L, Moreau J et al (2019) Association between progesterone to number of mature oocytes index and live birth in GnRH antagonist protocols. Reprod Biomed Online 38:901–907. https://doi.org/10.1016/j.rbmo.2019.01.009
doi: 10.1016/j.rbmo.2019.01.009
pubmed: 30952493
Long H, Yu W, Yu S et al (2021) Progesterone affects clinic oocyte yields by coordinating with follicle stimulating hormone via PI3K/AKT and MAPK pathways. J Adv Res 33:189–199. https://doi.org/10.1016/j.jare.2021.02.008
doi: 10.1016/j.jare.2021.02.008
pubmed: 34603789
pmcid: 8463924
Bonato DV, Ferreira EB, Gomes DN et al (2022) Follicular dynamics, luteal characteristics, and progesterone concentrations in synchronized lactating Holstein cows with high and low antral follicle counts. Theriogenology 179:223–229. https://doi.org/10.1016/j.theriogenology.2021.12.006
doi: 10.1016/j.theriogenology.2021.12.006
pubmed: 34896744
Kornmatitsuk B, Kornmatitsuk S (2021) Circulating progesterone concentrations and preovulatory follicle diameters affecting ovulatory response in crossbred dairy heifers, following a 7-day progesterone-based synchronization protocol. Trop Anim Health Prod 53:102. https://doi.org/10.1007/s11250-020-02494-1
doi: 10.1007/s11250-020-02494-1
pubmed: 33417076
Paulino L, Barroso PAA, Silva AWB et al (2020) Effects of epidermal growth factor and progesterone on development, ultrastructure and gene expression of bovine secondary follicles cultured in vitro. Theriogenology 142:284–290. https://doi.org/10.1016/j.theriogenology.2019.10.031
doi: 10.1016/j.theriogenology.2019.10.031
pubmed: 31711701