Role of charge in enhanced nuclear transport and retention of graphene quantum dots.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 Aug 2024
Historique:
received: 07 06 2024
accepted: 08 08 2024
medline: 17 8 2024
pubmed: 17 8 2024
entrez: 16 8 2024
Statut: epublish

Résumé

The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.

Identifiants

pubmed: 39152185
doi: 10.1038/s41598-024-69809-2
pii: 10.1038/s41598-024-69809-2
doi:

Substances chimiques

Graphite 7782-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

19044

Subventions

Organisme : Department of Science and Technology
ID : WOS-A/PM-32/2018

Informations de copyright

© 2024. The Author(s).

Références

Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: From molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).
doi: 10.1016/S0955-0674(99)80055-6 pubmed: 10395558
Allen, T. D., Cronshaw, J., Bagley, S., Kiseleva, E. & Goldberg, M. W. The nuclear pore complex: Mediator of translocation between nucleus and cytoplasm. J. Cell Sci. 113, 1651–1659 (2000).
doi: 10.1242/jcs.113.10.1651 pubmed: 10769196
Adam., S.A. The nuclear pore complex. Genome Biol. 2, 1–6 (2001).
Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
doi: 10.1128/MMBR.65.4.570-594.2001 pubmed: 11729264 pmcid: 99041
Keminer, O. & Peters, R. Permeability of single nuclear pores. Biophys. J. 77, 217–228 (1999).
doi: 10.1016/S0006-3495(99)76883-9 pubmed: 10388751 pmcid: 1300323
Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
doi: 10.1038/emboj.2009.200 pubmed: 19680228 pmcid: 2728435
Samudram, A., Mangalassery, B. M., Kowshik, M., Patincharath, N. & Varier, G. K. Passive permeability and effective pore size of HeLa cell nuclear membranes. Cell Biol. Int. 40, 991–998 (2016).
doi: 10.1002/cbin.10640 pubmed: 27338984
Timney, B. L. et al. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57–76 (2016).
doi: 10.1083/jcb.201601004 pubmed: 27697925 pmcid: 5057280
Ribbeck, K. & Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).
doi: 10.1093/emboj/20.6.1320 pubmed: 11250898 pmcid: 145537
Kabachinski, G. & Schwartz, T. U. The nuclear pore complex-structure and function at a glance. J. Cell Sci. 128, 423–429 (2015).
doi: 10.1242/jcs.083246 pubmed: 26046137 pmcid: 4311126
Beck, M. & Hurt, E. The nuclear pore complex: Understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2017).
doi: 10.1038/nrm.2016.147 pubmed: 27999437
Terry, L. J. & Wente, S. R. Flexible gates: Dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryotic Cell 8, 1814–1827 (2009).
doi: 10.1128/EC.00225-09 pubmed: 19801417 pmcid: 2794212
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteom. 9, 2205–2224 (2010).
doi: 10.1074/mcp.M000035-MCP201
Hayama, R. et al. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J. Biol. Chem. 293, 4555–4563 (2018).
doi: 10.1074/jbc.AC117.001649 pubmed: 29374059 pmcid: 5868264
Ghavami, A., Van Der Giessen, E. & Onck, P. R. Energetics of transport through the nuclear pore complex. PLoS One 11, e0148876 (2016).
doi: 10.1371/journal.pone.0148876 pubmed: 26894898 pmcid: 4764519
Paci, G., Caria, J. & Lemke, E.A. Cargo transport through the nuclear pore complex at a glance. J. Cell Sci. 134, jcs247874 (2021).
Colwell, L. J., Brenner, M. P. & Ribbeck, K. Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput. Biol. 6, e1000747 (2010).
doi: 10.1371/journal.pcbi.1000747 pubmed: 20421988 pmcid: 2858669
Tagliazucchi, M., Peleg, O., Kröger, M., Rabin, Y. & Szleifer, I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc. Natl. Acad. Sci. 110, 3363–3368 (2013).
doi: 10.1073/pnas.1212909110 pubmed: 23404701 pmcid: 3587244
Goryaynov, A. & Yang, W. Role of molecular charge in nucleocytoplasmic transport. PloS One 9, e88792 (2014).
doi: 10.1371/journal.pone.0088792 pubmed: 24558427 pmcid: 3928296
Shakhi, P. et al. Size-dependent steady state saturation limit in biomolecular transport through nuclear membranes. PLOS ONE 19, e0297738 (2024).
doi: 10.1371/journal.pone.0297738 pubmed: 38626108 pmcid: 11020410
Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Controlled Release 69, 1–25 (2000).
doi: 10.1016/S0168-3659(00)00302-3
Rouquette, J. et al. Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: A novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res. 17, 801–810 (2009).
doi: 10.1007/s10577-009-9070-x pubmed: 19731052
Lebeaupin, T., Smith, R. & Huet, S. The multiple effects of molecular crowding in the cell nucleus: From molecular dynamics to the regulation of nuclear architecture. Nuclear Arch. Dynam. 209–232 (2018).
Yang, C., Uertz, J., Yohan, D. & Chithrani, B. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 6, 12026–12033 (2014).
doi: 10.1039/C4NR02535K pubmed: 25182693
Jeong, W.-J. et al. Peptide-nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms?. Nano Convergence 5, 1–18 (2018).
doi: 10.1186/s40580-018-0170-1 pubmed: 29375956 pmcid: 5762775
Silva, S., Almeida, A. J. & Vale, N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 9, 22 (2019).
doi: 10.3390/biom9010022 pubmed: 30634689 pmcid: 6359287
Gessner, I. & Neundorf, I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21, 2536 (2020).
doi: 10.3390/ijms21072536 pubmed: 32268473 pmcid: 7177461
Gu, Z., Zhu, S., Yan, L., Zhao, F. & Zhao, Y. Graphene-based smart platforms for combined Cancer therapy. Adv. Mater. 31, 1800662 (2019).
doi: 10.1002/adma.201800662
Khandelia, R., Bhandari, S., Pan, U. N., Ghosh, S. S. & Chattopadhyay, A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small 11, 4075–4081 (2015).
doi: 10.1002/smll.201500216 pubmed: 25939342
Nurunnabi, M. et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858–6867 (2013).
doi: 10.1021/nn402043c pubmed: 23829293
Younis, M. R., He, G., Lin, J. & Huang, P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 8, 424 (2020).
doi: 10.3389/fchem.2020.00424 pubmed: 32582629 pmcid: 7283876
Karimi, M. et al. Albumin nanostructures as advanced drug delivery systems. Expert Opinion Drug Deliv. 13, 1609–1623 (2016).
doi: 10.1080/17425247.2016.1193149
Rafiei, S., Dadmehr, M., Hosseini, M., Kermani, H. A. & Ganjali, M. R. A fluorometric study on the effect of DNA methylation on DNA interaction with graphene quantum dots. Methods Appl. Fluorescence 7, 025001 (2019).
doi: 10.1088/2050-6120/aaff95
Qi, L. et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun. Biol. 4, 214 (2021).
doi: 10.1038/s42003-021-01713-1 pubmed: 33594275 pmcid: 7886873
Bhosle, A. A. et al. A combination of a graphene quantum dots-cationic red dye donor-acceptor pair and cucurbit [7] uril as a supramolecular sensor for ultrasensitive detection of cancer biomarkers spermine and spermidine. J. Mater. Chem. B 10, 8258–8273 (2022).
doi: 10.1039/D2TB01269C pubmed: 36134699
Adam, S. A., Marr, R. S. & Gerace, L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).
doi: 10.1083/jcb.111.3.807 pubmed: 2391365
Brownawell, A. M., Holaska, J. M., Macara, I. G. & Paschal, B. M. The use of permeabilized cell systems to study nuclear transport. Methods Mol. Biol. 189, 209–229 (2002).
pubmed: 12094589
Fang, J., Nakamura, H. & Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).
doi: 10.1016/j.addr.2010.04.009 pubmed: 20441782
Wong, A. D., Ye, M., Ulmschneider, M. B. & Searson, P. C. Quantitative analysis of the enhanced permeation and retention (EPR) effect. PloS One 10, e0123461 (2015).
doi: 10.1371/journal.pone.0123461 pubmed: 25938565 pmcid: 4418820
Chen, Y. & Chu, M. in The World Scientific Encyclopedia of Nanomedicine and Bioengineering II: Bioimplants, Regenerative Medicine, and Nano-Cancer Diagnosis and Phototherapy Volume 1: Synthesis and Biomedical Applications of Graphene Quantum Dots 115–125 (World Scientific, 2017).

Auteurs

Gorav Gorav (G)

Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.

Vrushali Khedekar (V)

Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.

Geetha K Varier (GK)

Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.

P Nandakumar (P)

Department of Physics, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, 403726, India. nandan@goa.bits-pilani.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH