Role of charge in enhanced nuclear transport and retention of graphene quantum dots.
FG nucleoporins
Graphene quantum dot
Nuclear pore complex
Nuclear transport
Time-lapse confocal imaging
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 Aug 2024
16 Aug 2024
Historique:
received:
07
06
2024
accepted:
08
08
2024
medline:
17
8
2024
pubmed:
17
8
2024
entrez:
16
8
2024
Statut:
epublish
Résumé
The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.
Identifiants
pubmed: 39152185
doi: 10.1038/s41598-024-69809-2
pii: 10.1038/s41598-024-69809-2
doi:
Substances chimiques
Graphite
7782-42-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19044Subventions
Organisme : Department of Science and Technology
ID : WOS-A/PM-32/2018
Informations de copyright
© 2024. The Author(s).
Références
Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: From molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).
doi: 10.1016/S0955-0674(99)80055-6
pubmed: 10395558
Allen, T. D., Cronshaw, J., Bagley, S., Kiseleva, E. & Goldberg, M. W. The nuclear pore complex: Mediator of translocation between nucleus and cytoplasm. J. Cell Sci. 113, 1651–1659 (2000).
doi: 10.1242/jcs.113.10.1651
pubmed: 10769196
Adam., S.A. The nuclear pore complex. Genome Biol. 2, 1–6 (2001).
Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
doi: 10.1128/MMBR.65.4.570-594.2001
pubmed: 11729264
pmcid: 99041
Keminer, O. & Peters, R. Permeability of single nuclear pores. Biophys. J. 77, 217–228 (1999).
doi: 10.1016/S0006-3495(99)76883-9
pubmed: 10388751
pmcid: 1300323
Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
doi: 10.1038/emboj.2009.200
pubmed: 19680228
pmcid: 2728435
Samudram, A., Mangalassery, B. M., Kowshik, M., Patincharath, N. & Varier, G. K. Passive permeability and effective pore size of HeLa cell nuclear membranes. Cell Biol. Int. 40, 991–998 (2016).
doi: 10.1002/cbin.10640
pubmed: 27338984
Timney, B. L. et al. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57–76 (2016).
doi: 10.1083/jcb.201601004
pubmed: 27697925
pmcid: 5057280
Ribbeck, K. & Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).
doi: 10.1093/emboj/20.6.1320
pubmed: 11250898
pmcid: 145537
Kabachinski, G. & Schwartz, T. U. The nuclear pore complex-structure and function at a glance. J. Cell Sci. 128, 423–429 (2015).
doi: 10.1242/jcs.083246
pubmed: 26046137
pmcid: 4311126
Beck, M. & Hurt, E. The nuclear pore complex: Understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89 (2017).
doi: 10.1038/nrm.2016.147
pubmed: 27999437
Terry, L. J. & Wente, S. R. Flexible gates: Dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryotic Cell 8, 1814–1827 (2009).
doi: 10.1128/EC.00225-09
pubmed: 19801417
pmcid: 2794212
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteom. 9, 2205–2224 (2010).
doi: 10.1074/mcp.M000035-MCP201
Hayama, R. et al. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J. Biol. Chem. 293, 4555–4563 (2018).
doi: 10.1074/jbc.AC117.001649
pubmed: 29374059
pmcid: 5868264
Ghavami, A., Van Der Giessen, E. & Onck, P. R. Energetics of transport through the nuclear pore complex. PLoS One 11, e0148876 (2016).
doi: 10.1371/journal.pone.0148876
pubmed: 26894898
pmcid: 4764519
Paci, G., Caria, J. & Lemke, E.A. Cargo transport through the nuclear pore complex at a glance. J. Cell Sci. 134, jcs247874 (2021).
Colwell, L. J., Brenner, M. P. & Ribbeck, K. Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput. Biol. 6, e1000747 (2010).
doi: 10.1371/journal.pcbi.1000747
pubmed: 20421988
pmcid: 2858669
Tagliazucchi, M., Peleg, O., Kröger, M., Rabin, Y. & Szleifer, I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc. Natl. Acad. Sci. 110, 3363–3368 (2013).
doi: 10.1073/pnas.1212909110
pubmed: 23404701
pmcid: 3587244
Goryaynov, A. & Yang, W. Role of molecular charge in nucleocytoplasmic transport. PloS One 9, e88792 (2014).
doi: 10.1371/journal.pone.0088792
pubmed: 24558427
pmcid: 3928296
Shakhi, P. et al. Size-dependent steady state saturation limit in biomolecular transport through nuclear membranes. PLOS ONE 19, e0297738 (2024).
doi: 10.1371/journal.pone.0297738
pubmed: 38626108
pmcid: 11020410
Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Controlled Release 69, 1–25 (2000).
doi: 10.1016/S0168-3659(00)00302-3
Rouquette, J. et al. Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: A novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res. 17, 801–810 (2009).
doi: 10.1007/s10577-009-9070-x
pubmed: 19731052
Lebeaupin, T., Smith, R. & Huet, S. The multiple effects of molecular crowding in the cell nucleus: From molecular dynamics to the regulation of nuclear architecture. Nuclear Arch. Dynam. 209–232 (2018).
Yang, C., Uertz, J., Yohan, D. & Chithrani, B. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 6, 12026–12033 (2014).
doi: 10.1039/C4NR02535K
pubmed: 25182693
Jeong, W.-J. et al. Peptide-nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms?. Nano Convergence 5, 1–18 (2018).
doi: 10.1186/s40580-018-0170-1
pubmed: 29375956
pmcid: 5762775
Silva, S., Almeida, A. J. & Vale, N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 9, 22 (2019).
doi: 10.3390/biom9010022
pubmed: 30634689
pmcid: 6359287
Gessner, I. & Neundorf, I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21, 2536 (2020).
doi: 10.3390/ijms21072536
pubmed: 32268473
pmcid: 7177461
Gu, Z., Zhu, S., Yan, L., Zhao, F. & Zhao, Y. Graphene-based smart platforms for combined Cancer therapy. Adv. Mater. 31, 1800662 (2019).
doi: 10.1002/adma.201800662
Khandelia, R., Bhandari, S., Pan, U. N., Ghosh, S. S. & Chattopadhyay, A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small 11, 4075–4081 (2015).
doi: 10.1002/smll.201500216
pubmed: 25939342
Nurunnabi, M. et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858–6867 (2013).
doi: 10.1021/nn402043c
pubmed: 23829293
Younis, M. R., He, G., Lin, J. & Huang, P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 8, 424 (2020).
doi: 10.3389/fchem.2020.00424
pubmed: 32582629
pmcid: 7283876
Karimi, M. et al. Albumin nanostructures as advanced drug delivery systems. Expert Opinion Drug Deliv. 13, 1609–1623 (2016).
doi: 10.1080/17425247.2016.1193149
Rafiei, S., Dadmehr, M., Hosseini, M., Kermani, H. A. & Ganjali, M. R. A fluorometric study on the effect of DNA methylation on DNA interaction with graphene quantum dots. Methods Appl. Fluorescence 7, 025001 (2019).
doi: 10.1088/2050-6120/aaff95
Qi, L. et al. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun. Biol. 4, 214 (2021).
doi: 10.1038/s42003-021-01713-1
pubmed: 33594275
pmcid: 7886873
Bhosle, A. A. et al. A combination of a graphene quantum dots-cationic red dye donor-acceptor pair and cucurbit [7] uril as a supramolecular sensor for ultrasensitive detection of cancer biomarkers spermine and spermidine. J. Mater. Chem. B 10, 8258–8273 (2022).
doi: 10.1039/D2TB01269C
pubmed: 36134699
Adam, S. A., Marr, R. S. & Gerace, L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111, 807–816 (1990).
doi: 10.1083/jcb.111.3.807
pubmed: 2391365
Brownawell, A. M., Holaska, J. M., Macara, I. G. & Paschal, B. M. The use of permeabilized cell systems to study nuclear transport. Methods Mol. Biol. 189, 209–229 (2002).
pubmed: 12094589
Fang, J., Nakamura, H. & Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).
doi: 10.1016/j.addr.2010.04.009
pubmed: 20441782
Wong, A. D., Ye, M., Ulmschneider, M. B. & Searson, P. C. Quantitative analysis of the enhanced permeation and retention (EPR) effect. PloS One 10, e0123461 (2015).
doi: 10.1371/journal.pone.0123461
pubmed: 25938565
pmcid: 4418820
Chen, Y. & Chu, M. in The World Scientific Encyclopedia of Nanomedicine and Bioengineering II: Bioimplants, Regenerative Medicine, and Nano-Cancer Diagnosis and Phototherapy Volume 1: Synthesis and Biomedical Applications of Graphene Quantum Dots 115–125 (World Scientific, 2017).