Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs.


Journal

Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427

Informations de publication

Date de publication:
17 Aug 2024
Historique:
received: 04 06 2024
accepted: 09 08 2024
revised: 30 07 2024
medline: 17 8 2024
pubmed: 17 8 2024
entrez: 17 8 2024
Statut: epublish

Résumé

Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.

Identifiants

pubmed: 39153075
doi: 10.1007/s00203-024-04107-z
pii: 10.1007/s00203-024-04107-z
doi:

Substances chimiques

Anti-Bacterial Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

382

Subventions

Organisme : Indian Council of Medical Research
ID : IRIS ID: 2021-11889

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abavisani M, Keikha M, Karbalaei M (2024) First global report about the prevalence of multi-drug resistant Haemophilus influenzae: a systematic review and meta-analysis. BMC Infect Dis 24:90. https://doi.org/10.1186/s12879-023-08930-5
doi: 10.1186/s12879-023-08930-5 pubmed: 38225571 pmcid: 10789054
Abayneh M, Muleta D, Simieneh A et al (2022) Acute respiratory infections (ARIs) and factors associated with their poor clinical outcome among children under-five years attending pediatric wards of public hospital in Southwest district of Ethiopia: a prospective observational cohort study. Eur J Inflamm 20:1721727X2211392. https://doi.org/10.1177/1721727X221139266
doi: 10.1177/1721727X221139266
Abbas R, Chakkour M, El Zein H et al (2024) General Overview of Klebsiella pneumonia: epidemiology and the role of Siderophores in its pathogenicity. Biology (Basel) 13:78. https://doi.org/10.3390/biology13020078
doi: 10.3390/biology13020078 pubmed: 38392297
Abdou D (2023) Antibiotic susceptibility profiles of Haemophilus influenzae isolates collected in Dakar between 2018 and 2022. Microb Sci Arch 03:120–124. https://doi.org/10.47587/MSA.2023.3307
doi: 10.47587/MSA.2023.3307
Aceil J, Avci FY (2022) Pneumococcal surface proteins as virulence factors, immunogens, and conserved vaccine targets. Front Cell Infect Microbiol 12. https://doi.org/10.3389/fcimb.2022.832254
Ahmadi M, Ranjbar R, Behzadi P, Mohammadian T (2022) Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of Klebsiella Pneumoniae. Expert Rev Anti Infect Ther 20:463–472. https://doi.org/10.1080/14787210.2022.1990040
doi: 10.1080/14787210.2022.1990040 pubmed: 34612762
Al-Bermani OK, Al-Kaim H, Ali-Malik, Saad (2020) Pathogenesis of Streptococcus pyogenes and immune response. Al-Kufa Univ J Biol 12:34–38. https://doi.org/10.36320/ajb/v12.i3.11796
doi: 10.36320/ajb/v12.i3.11796
Alam M, Bastakoti B (2015) Therapeutic guidelines: antibiotic. Version 15. Aust Prescr 38:137–137. https://doi.org/10.18773/austprescr.2015.049
doi: 10.18773/austprescr.2015.049 pmcid: 4653983
Alamiri F, Chao Y, Baumgarten M et al (2020) A role of epithelial cells and virulence factors in Biofilm formation by Streptococcus pyogenes in Vitro. Infect Immun 88. https://doi.org/10.1128/IAI.00133-20
Alamiri F, André O, De S et al (2023) Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro. Front Cell Infect Microbiol 13. https://doi.org/10.3389/fcimb.2023.1146431
AlChalabi R, Al-Rahim A, Omer D, Suleiman AA (2022) Immunoinformatics design of multi-epitope peptide-based vaccine against Haemophilus influenzae strain using cell division protein. Netw Model Anal Heal Inf Bioinforma 12:1. https://doi.org/10.1007/s13721-022-00395-x
doi: 10.1007/s13721-022-00395-x
Aleem MS, Sexton R, Akella J (2024) Pneumonia in an Immunocompromised Patient
Algammal A, Hetta HF, Mabrok M, Behzadi P (2023) Editorial: emerging multidrug-resistant bacterial pathogens superbugs: a rising public health threat. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1135614
Algar V, Novelli V (2007) Infections in the immunocompromised host. Paediatr Child Health (Oxford) 17:132–136. https://doi.org/10.1016/j.paed.2007.02.001
doi: 10.1016/j.paed.2007.02.001
Ali M, Reshad R, Aunkor M et al (2023) Antimicrobial Resistance: understanding the mechanism and strategies for Prevention and Control. J Adv Biotechnol Exp Ther 6:468. https://doi.org/10.5455/jabet.2023.d142
doi: 10.5455/jabet.2023.d142
Alsayed SSR, Gunosewoyo H (2023) Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int J Mol Sci 24:5202. https://doi.org/10.3390/ijms24065202
doi: 10.3390/ijms24065202 pubmed: 36982277 pmcid: 10049048
Amari S, Warda K, Bouraddane M et al (2023) Antibiotic resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than five Years Old after the generalization of pneumococcal vaccination in Marrakesh, Morocco. Antibiotics 12:442. https://doi.org/10.3390/antibiotics12030442
doi: 10.3390/antibiotics12030442 pubmed: 36978307 pmcid: 10044557
An Z, Huang X, Zheng C, Ding W (2019) Acinetobacter baumannii outer membrane protein A induces HeLa cell autophagy via MAPK/JNK signaling pathway. Int J Med Microbiol 309:97–107. https://doi.org/10.1016/j.ijmm.2018.12.004
doi: 10.1016/j.ijmm.2018.12.004 pubmed: 30606692
An N, Hai L, Luong V et al (2024) Antimicrobial resistance patterns of Staphylococcus Aureus isolated at a General Hospital in Vietnam between 2014 and 2021. Infect Drug Resist Volume 17:259–273. https://doi.org/10.2147/IDR.S437920
doi: 10.2147/IDR.S437920
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A Comprehensive Review on Medicinal plants as Antimicrobial therapeutics: potential avenues of Biocompatible Drug Discovery. Metabolites 9:258. https://doi.org/10.3390/metabo9110258
doi: 10.3390/metabo9110258 pubmed: 31683833 pmcid: 6918160
Preethi A R, Anand Anbarasu (2023) Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review Probiotics and Antimicrobial Proteins 15(6):1539–1566. https://doi.org/10.1007/s12602-022-10018-6
doi: 10.1007/s12602-022-10018-6
Anitha P, Anbarasu A, Ramaiah S (2016) Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: a report on an important pathogenic bacterium Staphylococcus aureus. Gene 575:253–263. https://doi.org/10.1016/j.gene.2015.08.068
doi: 10.1016/j.gene.2015.08.068 pubmed: 26342962
Arif SM, Floto RA, Blundell TL (2022) Using structure-guided fragment-based drug Discovery to target Pseudomonas aeruginosa infections in cystic fibrosis. Front Mol Biosci 9. https://doi.org/10.3389/fmolb.2022.857000
Ashurst JV, Dawson A (2024) Klebsiella Pneumonia
Aslam S, Ashfaq UA, Zia T et al (2022) Proteome based mapping and reverse vaccinology techniques to contrive multi-epitope based subunit vaccine (MEBSV) against Streptococcus pyogenes. Infect Genet Evol 100:105259. https://doi.org/10.1016/j.meegid.2022.105259
doi: 10.1016/j.meegid.2022.105259 pubmed: 35231667
Assoni L, Girardello R, Converso TR, Darrieux M (2021) Current stage in the development of Klebsiella pneumoniae vaccines. Infect Dis Ther 10:2157–2175. https://doi.org/10.1007/s40121-021-00533-4
doi: 10.1007/s40121-021-00533-4 pubmed: 34476772 pmcid: 8412853
Avendaño Carvajal L, Perret Pérez C (2020) Epidemiology of respiratory infections. Pediatric Respiratory diseases. Springer International Publishing, Cham, pp 263–272
doi: 10.1007/978-3-030-26961-6_28
Azoulay E, Russell L, Van de Louw A et al (2020) Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med 46:298–314. https://doi.org/10.1007/s00134-019-05906-5
doi: 10.1007/s00134-019-05906-5 pubmed: 32034433 pmcid: 7080052
Basu S, Varghese R, Debroy R et al (2022) Non-steroidal anti-inflammatory drugs ketorolac and etodolac can augment the treatment against pneumococcal meningitis by targeting penicillin-binding proteins. Microb Pathog 170:105694. https://doi.org/10.1016/j.micpath.2022.105694
doi: 10.1016/j.micpath.2022.105694 pubmed: 35921951
Basu S, Veeraraghavan B, Anbarasu A (2024) Impact of PmrB mutations on clinical Klebsiella pneumoniae with variable colistin-susceptibilities: structural insights and potent therapeutic solutions. Chem Biol Drug Des 103. https://doi.org/10.1111/cbdd.14381
Baur S, Rautenberg M, Faulstich M et al (2014) A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10:e1004089. https://doi.org/10.1371/journal.ppat.1004089
doi: 10.1371/journal.ppat.1004089 pubmed: 24788600 pmcid: 4006915
Behzadi P, García-Perdomo HA, Karpiński TM, Issakhanian L (2020) Metallo-ß-lactamases: a review. Mol Biol Rep 47:6281–6294. https://doi.org/10.1007/s11033-020-05651-9
doi: 10.1007/s11033-020-05651-9 pubmed: 32654052
Behzadi P, García-Perdomo HA, Karpiński TM (2021) Toll-like receptors: General Molecular and Structural Biology. J Immunol Res 2021:1–21. https://doi.org/10.1155/2021/9914854
doi: 10.1155/2021/9914854
Behzadi P, Gajdács M, Pallós P et al (2022a) Relationship between Biofilm-Formation, phenotypic virulence factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens 11:1015. https://doi.org/10.3390/pathogens11091015
doi: 10.3390/pathogens11091015 pubmed: 36145447 pmcid: 9503712
Behzadi P, Sameer AS, Nissar S et al (2022b) The Interleukin-1 (IL-1) Superfamily cytokines and their single nucleotide polymorphisms (SNPs). J Immunol Res 2022:1–25. https://doi.org/10.1155/2022/2054431
doi: 10.1155/2022/2054431
Bengoechea JA, Sa Pessoa J (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 43:123–144. https://doi.org/10.1093/femsre/fuy043
doi: 10.1093/femsre/fuy043 pubmed: 30452654
Berbel D, Càmara J, González-Díaz A et al (2021) Deciphering mobile genetic elements disseminating macrolide resistance in Streptococcus pyogenes over a 21 year period in Barcelona, Spain. J Antimicrob Chemother 76:1991–2003. https://doi.org/10.1093/jac/dkab130
doi: 10.1093/jac/dkab130 pubmed: 34015100
Bethencourt Mirabal A, Nguyen AD, Ferrer G (2024) Lung Nontuberculous Mycobacterial Infections
Bevivino A, Bacci G, Drevinek P et al (2019) Deciphering the Ecology of cystic fibrosis bacterial communities: towards systems-Level Integration. Trends Mol Med 25:1110–1122. https://doi.org/10.1016/j.molmed.2019.07.008
doi: 10.1016/j.molmed.2019.07.008 pubmed: 31439509
Biron DG, Nedelkov D, Missé D, Holzmuller P (2011) Proteomics and host—Pathogen interactions. Genetics and Evolution of Infectious Disease. Elsevier, pp 263–303
Biswas R, Swetha RG, Basu S et al (2024) Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 87:101782. https://doi.org/10.1016/j.biologicals.2024.101782
doi: 10.1016/j.biologicals.2024.101782 pubmed: 39003966
Bouzeyen R, Javid B (2022) Therapeutic vaccines for tuberculosis: an overview. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.878471
Braverman J, Monk IR, Ge C et al (2022) Staphylococcus aureus specific lung resident memory CD4 + Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia. Mucosal Immunol 15:783–796. https://doi.org/10.1038/s41385-022-00529-4
doi: 10.1038/s41385-022-00529-4 pubmed: 35637249 pmcid: 9148937
Briles DE, Paton JC, Mukerji R et al (2019) Pneumococcal vaccines. https://doi.org/10.1128/microbiolspec.GPP3-0028-2018 . Microbiol Spectr 7:
Brooks LRK, Mias GI (2018) Streptococcus pneumoniae’s virulence and host immunity: Aging, Diagnostics, and Prevention. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.01366
Calderaro A, Buttrini M, Farina B et al (2022) Respiratory Tract Infections and Laboratory Diagnostic methods: a review with a focus on Syndromic Panel-based assays. Microorganisms 10:1856. https://doi.org/10.3390/microorganisms10091856
doi: 10.3390/microorganisms10091856 pubmed: 36144458 pmcid: 9504108
Černiauskienė K, Dambrauskienė A, Vitkauskienė A (2023) Associations between β-Lactamase types of Acinetobacter baumannii and Antimicrobial Resistance. Med (B Aires) 59:1386. https://doi.org/10.3390/medicina59081386
doi: 10.3390/medicina59081386
Chakravarty S, Massé E (2019) RNA-Dependent regulation of virulence in pathogenic Bacteria. Front Cell Infect Microbiol 9. https://doi.org/10.3389/fcimb.2019.00337
Chandy S, Manoharan A, Hameed A et al (2022) A study on pediatric respiratory tract infections in hospitalised children from Chennai. Clin Epidemiol Glob Heal 15:101067. https://doi.org/10.1016/j.cegh.2022.101067
doi: 10.1016/j.cegh.2022.101067
Chang A, Adlowitz DG, Yellamatty E, Pichichero M (2010) Haemophilus influenzae outer membrane protein P6 molecular characterization may not differentiate all strains of H. Influenzae from H. Haemolyticus. J Clin Microbiol 48:3756–3757. https://doi.org/10.1128/JCM.01255-10
doi: 10.1128/JCM.01255-10 pubmed: 20686092 pmcid: 2953139
Chang RYK, Wallin M, Lin Y et al (2018) Phage therapy for respiratory infections. Adv Drug Deliv Rev 133:76–86. https://doi.org/10.1016/j.addr.2018.08.001
doi: 10.1016/j.addr.2018.08.001 pubmed: 30096336 pmcid: 6226339
Chatterjee R, Sahoo P, Mahapatra SR et al (2021) Development of a conserved chimeric vaccine for induction of strong Immune response against Staphylococcus aureus using Immunoinformatics approaches. Vaccines 9:1038. https://doi.org/10.3390/vaccines9091038
doi: 10.3390/vaccines9091038 pubmed: 34579274 pmcid: 8470666
Chen C-L, Dudek A, Liang Y-H et al (2022) d-mannose-sensitive pilus of Acinetobacter baumannii is linked to biofilm formation and adherence onto respiratory tract epithelial cells. J Microbiol Immunol Infect 55:69–79. https://doi.org/10.1016/j.jmii.2021.01.008
doi: 10.1016/j.jmii.2021.01.008 pubmed: 33610507
Childs A, Zullo AR, Joyce NR et al (2019) The burden of respiratory infections among older adults in long-term care: a systematic review. BMC Geriatr 19:210. https://doi.org/10.1186/s12877-019-1236-6
doi: 10.1186/s12877-019-1236-6 pubmed: 31382895 pmcid: 6683564
Cillóniz C, Garcia-Vidal C, Ceccato A, Torres A (2018) Antimicrobial Resistance among Streptococcus pneumoniae. Antimicrobial Resistance in the 21st Century. Springer International Publishing, Cham, pp 13–38
doi: 10.1007/978-3-319-78538-7_2
Conn GL, Bavro VN, Davies C (2019) Editorial: bacterial mechanisms of Antibiotic Resistance: a structural perspective. Front Mol Biosci 6. https://doi.org/10.3389/fmolb.2019.00071
Connor NE, Islam MS, Mullany LC et al (2022) Risk factors for community-acquired bacterial infection among young infants in South Asia: a longitudinal cohort study with nested case–control analysis. BMJ Glob Heal 7:e009706. https://doi.org/10.1136/bmjgh-2022-009706
doi: 10.1136/bmjgh-2022-009706
Costain G, Cohn RD, Scherer SW, Marshall CR (2021) Genome sequencing as a diagnostic test. Can Med Assoc J 193:E1626–E1629. https://doi.org/10.1503/cmaj.210549
doi: 10.1503/cmaj.210549
Curran CS, Bolig T, Torabi-Parizi P (2018) Mechanisms and targeted therapies for Pseudomonas aeruginosa Lung infection. Am J Respir Crit Care Med 197:708–727. https://doi.org/10.1164/rccm.201705-1043SO
doi: 10.1164/rccm.201705-1043SO pubmed: 29087211 pmcid: 5855068
Dar HA, Zaheer T, Shehroz M et al (2019) Immunoinformatics-aided design and evaluation of a potential Multi-epitope Vaccine against Klebsiella Pneumoniae. Vaccines 7:88. https://doi.org/10.3390/vaccines7030088
doi: 10.3390/vaccines7030088 pubmed: 31409021 pmcid: 6789656
de Miguel-Díez J, López-de-Andrés A, Hernández-Barrera V et al (2017) Impact of COPD on outcomes in hospitalized patients with community-acquired pneumonia: analysis of the Spanish national hospital discharge database (2004–2013). Eur J Intern Med 43:69–76. https://doi.org/10.1016/j.ejim.2017.06.008
doi: 10.1016/j.ejim.2017.06.008 pubmed: 28615117
Deinhardt-Emmer S, Haupt KF, Garcia-Moreno M et al (2019) Staphylococcus aureus Pneumonia: Preceding Influenza infection paves the way for low-virulent strains. Toxins (Basel) 11:734. https://doi.org/10.3390/toxins11120734
doi: 10.3390/toxins11120734 pubmed: 31861176
Deng X, den Bakker HC, Hendriksen RS (2016) Genomic epidemiology: whole-genome-sequencing–powered surveillance and Outbreak Investigation of Foodborne bacterial pathogens. Annu Rev Food Sci Technol 7:353–374. https://doi.org/10.1146/annurev-food-041715-033259
doi: 10.1146/annurev-food-041715-033259 pubmed: 26772415
Derbyshire EJ, Calder PC (2021) Respiratory tract infections and antibiotic resistance: a protective role for vitamin D? https://doi.org/10.3389/fnut.2021.652469 . Front Nutr 8:
Dhillon BK, Smith M, Baghela A et al (2020) Systems Biology approaches to understanding the human Immune System. https://doi.org/10.3389/fimmu.2020.01683 . Front Immunol 11:
Dion CF, Ashurst JV (2024) Streptococcus pneumoniae
Dörries K, Schlueter R, Lalk M (2014) Impact of antibiotics with various Target sites on the Metabolome of Staphylococcus aureus. Antimicrob Agents Chemother 58:7151–7163. https://doi.org/10.1128/AAC.03104-14
doi: 10.1128/AAC.03104-14 pubmed: 25224006 pmcid: 4249544
Douradinha B (2024) Exploring the journey: a comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res 287:127837. https://doi.org/10.1016/j.micres.2024.127837
doi: 10.1016/j.micres.2024.127837 pubmed: 39059097
Du D, Wang-Kan X, Neuberger A et al (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16:523–539. https://doi.org/10.1038/s41579-018-0048-6
doi: 10.1038/s41579-018-0048-6 pubmed: 30002505
Du S, Vilhena C, King S et al (2021) Molecular analyses identifies new domains and structural differences among Streptococcus pneumoniae immune evasion proteins PspC and hic. Sci Rep 11:1701. https://doi.org/10.1038/s41598-020-79362-3
doi: 10.1038/s41598-020-79362-3 pubmed: 33462258 pmcid: 7814132
Edgeworth JD (2023) Respiratory metagenomics: route to routine service. Curr Opin Infect Dis 36:115–123. https://doi.org/10.1097/QCO.0000000000000909
doi: 10.1097/QCO.0000000000000909 pubmed: 36853748 pmcid: 10004755
Ekinci E, Willen L, Rodriguez Ruiz JP et al (2023) Haemophilus influenzae carriage and antibiotic resistance profile in Belgian infants over a three-year period (2016–2018). https://doi.org/10.3389/fmicb.2023.1160073 . Front Microbiol 14:
El Ashkar S, Osman M, Rafei R et al (2017) Molecular detection of genes responsible for macrolide resistance among Streptococcus pneumoniae isolated in North Lebanon. J Infect Public Health 10:745–748. https://doi.org/10.1016/j.jiph.2016.11.014
doi: 10.1016/j.jiph.2016.11.014 pubmed: 28215918
Elhag M, Alaagib RM, Ahmed NM et al (2020) Design of Epitope-based peptide vaccine against Pseudomonas aeruginosa Fructose Bisphosphate aldolase protein using Immunoinformatics. J Immunol Res 2020:1–11. https://doi.org/10.1155/2020/9475058
doi: 10.1155/2020/9475058
Ellington MJ, Ekelund O, Aarestrup FM et al (2017) The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 23:2–22. https://doi.org/10.1016/j.cmi.2016.11.012
doi: 10.1016/j.cmi.2016.11.012 pubmed: 27890457
Fan X, Liu X, Ji L et al (2018) Epidemiological analysis and rapid detection by one-step multiplex PCR assay of Haemophilus influenzae in children with respiratory tract infections in Zhejiang Province, China. BMC Infect Dis 18:414. https://doi.org/10.1186/s12879-018-3295-2
doi: 10.1186/s12879-018-3295-2 pubmed: 30134854 pmcid: 6103868
Fan J, Toth I, Stephenson RJ (2024) Recent scientific advancements towards a vaccine against Group A Streptococcus. Vaccines 12:272. https://doi.org/10.3390/vaccines12030272
doi: 10.3390/vaccines12030272 pubmed: 38543906 pmcid: 10974072
Fischetti VA (2019) Vaccine approaches to protect against Group A Streptococcal Pharyngitis. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0010-2018
Fontaine MC, Lee JJ, Kehoe MA (2003) Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect Immun 71:3857–3865. https://doi.org/10.1128/IAI.71.7.3857-3865.2003
doi: 10.1128/IAI.71.7.3857-3865.2003 pubmed: 12819070 pmcid: 162000
Fothergill JL, Neill DR, Loman N et al (2014) Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun 5:4780. https://doi.org/10.1038/ncomms5780
doi: 10.1038/ncomms5780 pubmed: 25179232
Freschi L, Vincent AT, Jeukens J et al (2019) The Pseudomonas aeruginosa Pan-genome provides New insights on its Population structure, horizontal gene transfer, and Pathogenicity. Genome Biol Evol 11:109–120. https://doi.org/10.1093/gbe/evy259
doi: 10.1093/gbe/evy259 pubmed: 30496396
Gao NJ, Uchiyama S, Pill L et al (2021) Site-specific conjugation of Cell Wall Polyrhamnose to protein SpyAD envisioning a safe Universal Group A Streptococcal Vaccine. Infect Microbes Dis 3:87–100. https://doi.org/10.1097/IM9.0000000000000044
doi: 10.1097/IM9.0000000000000044
Garcia-Clemente M, de la Rosa D, Máiz L et al (2020) Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory Airway diseases. J Clin Med 9. https://doi.org/10.3390/jcm9123800
GBD 2016 Lower Respiratory Infections Collaborators (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Infect Dis 18:1191–1210. https://doi.org/10.1016/S1473-3099(18)30310-4
doi: 10.1016/S1473-3099(18)30310-4
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR (2019) Acinetobacter baumannii: envelope determinants that control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 73:481–506. https://doi.org/10.1146/annurev-micro-020518-115714
doi: 10.1146/annurev-micro-020518-115714 pubmed: 31206345
Golshahi L, Seed KD, Dennis JJ, Finlay WH (2008) Toward Modern Inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia Complex. J Aerosol Med Pulm Drug Deliv 21:351–360. https://doi.org/10.1089/jamp.2008.0701
doi: 10.1089/jamp.2008.0701 pubmed: 18800880
Grad YH, Lipsitch M (2014) Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol 15:538. https://doi.org/10.1186/s13059-014-0538-4
doi: 10.1186/s13059-014-0538-4 pubmed: 25418119 pmcid: 4282151
Grzela K, Zagórska W, Grzela T (2012) Mechanisms of the innate immunity in the respiratory system. Cent Eur J Immunol 3:280–285. https://doi.org/10.5114/ceji.2012.30807
doi: 10.5114/ceji.2012.30807
Guirado E, Amat I, Gil O et al (2006) Passive serum therapy with polyclonal antibodies against Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect 8:1252–1259. https://doi.org/10.1016/j.micinf.2005.12.004
doi: 10.1016/j.micinf.2005.12.004 pubmed: 16702016
Guitor AK, Wright GD (2018) Antimicrobial Resistance and respiratory infections. Chest 154:1202–1212. https://doi.org/10.1016/j.chest.2018.06.019
doi: 10.1016/j.chest.2018.06.019 pubmed: 29959904
Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254. https://doi.org/10.1038/nrmicro2745
doi: 10.1038/nrmicro2745 pubmed: 22421877
Hassanzadeh H, Baber J, Begier E et al (2023) Efficacy of a 4-Antigen Staphylococcus aureus Vaccine in spinal surgery: the STaphylococcus aureus suRgical Inpatient Vaccine Efficacy (STRIVE) Randomized Clinical Trial. Clin Infect Dis 77:312–320. https://doi.org/10.1093/cid/ciad218
doi: 10.1093/cid/ciad218 pubmed: 37125490 pmcid: 10371312
Hawser S, Lociuro S, Islam K (2006) Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol 71:941–948. https://doi.org/10.1016/j.bcp.2005.10.052
doi: 10.1016/j.bcp.2005.10.052 pubmed: 16359642
He Y, Liu WJ, Jia N et al (2023) Viral respiratory infections in a rapidly changing climate: the need to prepare for the next pandemic. eBioMedicine 93:104593. https://doi.org/10.1016/j.ebiom.2023.104593
doi: 10.1016/j.ebiom.2023.104593 pubmed: 37169688 pmcid: 10363434
Hibbert TM, Whiteley M, Renshaw SA et al (2023) Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 1–16. https://doi.org/10.1080/1040841X.2023.2285995
Hilleringmann M, Giusti F, Baudner BC et al (2008) Pneumococcal pili are composed of protofilaments exposing Adhesive clusters of Rrg A. PLoS Pathog 4:e1000026. https://doi.org/10.1371/journal.ppat.1000026
doi: 10.1371/journal.ppat.1000026 pubmed: 18369475 pmcid: 2265430
Holler JG, Christensen SB, Slotved H-C et al (2012) Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue nees. J Antimicrob Chemother 67:1138–1144. https://doi.org/10.1093/jac/dks005
doi: 10.1093/jac/dks005 pubmed: 22311936
Honkoop P, Usmani O, Bonini M (2022) The current and future role of Technology in Respiratory Care. Pulm Ther 8:167–179. https://doi.org/10.1007/s41030-022-00191-y
doi: 10.1007/s41030-022-00191-y pubmed: 35471689 pmcid: 9039604
Huy TXN (2024) Overcoming Klebsiella pneumoniae antibiotic resistance: new insights into mechanisms and drug discovery. Beni-Suef Univ J Basic Appl Sci 13:13. https://doi.org/10.1186/s43088-024-00470-4
doi: 10.1186/s43088-024-00470-4
Inoue K, Kinoshita M, Muranishi K et al (2023) Effect of a Novel Trivalent Vaccine Formulation against Acute Lung Injury caused by Pseudomonas aeruginosa. Vaccines 11:1088. https://doi.org/10.3390/vaccines11061088
doi: 10.3390/vaccines11061088 pubmed: 37376477 pmcid: 10304393
Jafari D, Malih S, Gomari MM et al (2020) Designing a chimeric subunit vaccine for influenza virus, based on HA2, M2e and CTxB: a bioinformatics study. BMC Mol Cell Biol 21:89. https://doi.org/10.1186/s12860-020-00334-6
doi: 10.1186/s12860-020-00334-6 pubmed: 33276715 pmcid: 7716444
Jain S, Self WH, Wunderink RG et al (2015) Community-Acquired Pneumonia requiring hospitalization among U.S. adults. N Engl J Med 373:415–427. https://doi.org/10.1056/NEJMoa1500245
doi: 10.1056/NEJMoa1500245 pubmed: 26172429 pmcid: 4728150
Jain R, Beckett VV, Konstan MW et al (2018) KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros 17:484–491. https://doi.org/10.1016/j.jcf.2017.12.006
doi: 10.1016/j.jcf.2017.12.006 pubmed: 29292092
Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65:187–207. https://doi.org/10.1128/MMBR.65.2.187-207.2001
doi: 10.1128/MMBR.65.2.187-207.2001 pubmed: 11381099 pmcid: 99024
Jeffreys S, Tompkins MP, Aki J et al (2024) Development and evaluation of an Immunoinformatics-based Multi-peptide Vaccine against Acinetobacter baumannii infection. Vaccines 12:358. https://doi.org/10.3390/vaccines12040358
doi: 10.3390/vaccines12040358 pubmed: 38675740 pmcid: 11054912
Jensen A, Valdórsson O, Frimodt-Møller N et al (2015) Commensal Streptococci serve as a Reservoir for β-Lactam resistance genes in Streptococcus pneumoniae. Antimicrob Agents Chemother 59:3529–3540. https://doi.org/10.1128/AAC.00429-15
doi: 10.1128/AAC.00429-15 pubmed: 25845880 pmcid: 4432199
Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thorac Dis 6:210–220. https://doi.org/10.3978/j.issn.2072-1439.2013.12.24
doi: 10.3978/j.issn.2072-1439.2013.12.24 pubmed: 24624285 pmcid: 3949190
Joshi T, Sharma P, Joshi T et al (2022) Repurposing of FDA approved drugs against Salmonella enteric serovar Typhi by targeting dihydrofolate reductase: an in silico study. J Biomol Struct Dyn 40:3731–3744. https://doi.org/10.1080/07391102.2020.1850356
doi: 10.1080/07391102.2020.1850356 pubmed: 33251976
Joshi T, Vijayakumar S, Ghosh S et al (2024) Identifying Novel therapeutics for the resistant mutant F533L in PBP3 of Pseudomonas aeruginosa using ML techniques. ACS Omega 9:28046–28060. https://doi.org/10.1021/acsomega.4c00929
doi: 10.1021/acsomega.4c00929 pubmed: 38973840 pmcid: 11223260
Kaczmarek FS, Gootz TD, Dib-Hajj F et al (2004) Genetic and molecular characterization of β-Lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to Ampicillin. Antimicrob Agents Chemother 48:1630–1639. https://doi.org/10.1128/AAC.48.5.1630-1639.2004
doi: 10.1128/AAC.48.5.1630-1639.2004 pubmed: 15105114 pmcid: 400547
Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301. https://doi.org/10.1038/nrmicro1871
doi: 10.1038/nrmicro1871 pubmed: 18340341
Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33:300–305. https://doi.org/10.4103/joacp.JOACP_349_15
doi: 10.4103/joacp.JOACP_349_15 pubmed: 29109626 pmcid: 5672523
Karampatakis T, Tsergouli K, Behzadi P (2023) Carbapenem-resistant Klebsiella pneumoniae: virulence factors, molecular epidemiology and latest updates in Treatment options. Antibiotics 12:234. https://doi.org/10.3390/antibiotics12020234
doi: 10.3390/antibiotics12020234 pubmed: 36830145 pmcid: 9952820
Karampatakis T, Tsergouli K, Behzadi P (2024) Pan-genome plasticity and virulence factors: a natural treasure trove for Acinetobacter baumannii. Antibiotics 13:257. https://doi.org/10.3390/antibiotics13030257
doi: 10.3390/antibiotics13030257 pubmed: 38534692 pmcid: 10967457
Karlsson R, Thorsell A, Gomila M et al (2020) Discovery of species-unique peptide biomarkers of bacterial pathogens by Tandem Mass Spectrometry-based Proteotyping. Mol Cell Proteom 19:518–528. https://doi.org/10.1074/mcp.RA119.001667
doi: 10.1074/mcp.RA119.001667
Kebede D, Admas A, Mekonnen D (2021) Prevalence and antibiotics susceptibility profiles of Streptococcus pyogenes among pediatric patients with acute pharyngitis at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Microbiol 21:135. https://doi.org/10.1186/s12866-021-02196-0
doi: 10.1186/s12866-021-02196-0 pubmed: 33941090 pmcid: 8091706
Khare T, Anand U, Dey A et al (2021) Exploring phytochemicals for combating Antibiotic Resistance in Microbial pathogens. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.720726
Khattak ZE, Anjum F (2023) Haemophilus influenzae Infection
Killough M, Rodgers A, Ingram R (2022) Pseudomonas aeruginosa: recent advances in Vaccine Development. Vaccines 10:1100. https://doi.org/10.3390/vaccines10071100
doi: 10.3390/vaccines10071100 pubmed: 35891262 pmcid: 9320790
Kim G-L, Seon S-H, Rhee D-K (2017) Pneumonia and Streptococcus pneumoniae vaccine. Arch Pharm Res 40:885–893. https://doi.org/10.1007/s12272-017-0933-y
doi: 10.1007/s12272-017-0933-y pubmed: 28735461 pmcid: 7090487
King P (2012) Haemophilus influenzae and the lung (Haemophilus and the lung). Clin Transl Med. https://doi.org/10.1186/2001-1326-1-10 . 1:
doi: 10.1186/2001-1326-1-10 pubmed: 23369277 pmcid: 3567431
Kongkham B, Prabakaran D, Puttaswamy H (2020) Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia 147:104762. https://doi.org/10.1016/j.fitote.2020.104762
doi: 10.1016/j.fitote.2020.104762 pubmed: 33069839
Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A (2021) Acinetobacter baumannii Antibiotic Resistance mechanisms. Pathogens 10:373. https://doi.org/10.3390/pathogens10030373
doi: 10.3390/pathogens10030373 pubmed: 33808905 pmcid: 8003822
Lange P (2009) Chronic obstructive pulmonary disease and risk of infection. Pneumonol Alergol Pol 77:284–288
pubmed: 19591100
Lazar H, Horn MP, Zuercher AW et al (2009) Pharmacokinetics and Safety Profile of the human Anti- Pseudomonas aeruginosa Serotype O11 Immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers. Antimicrob Agents Chemother 53:3442–3446. https://doi.org/10.1128/AAC.01699-08
doi: 10.1128/AAC.01699-08 pubmed: 19451304 pmcid: 2715602
LeClaire RD, Hunt RE, Bavari S (2002) Protection against Bacterial Superantigen Staphylococcal Enterotoxin B by Passive Vaccination. Infect Immun 70:2278–2281. https://doi.org/10.1128/IAI.70.5.2278-2281.2002
doi: 10.1128/IAI.70.5.2278-2281.2002 pubmed: 11953360 pmcid: 127924
Letourneau AR, Issa NC, Baden LR (2014) Pneumonia in the immunocompromised host. Curr Opin Pulm Med 20:272–279. https://doi.org/10.1097/MCP.0000000000000051
doi: 10.1097/MCP.0000000000000051 pubmed: 24626236
Li C-X, Gao J, Zhang Z et al (2022) Multiomics integration-based molecular characterizations of COVID-19. https://doi.org/10.1093/bib/bbab485 . Brief Bioinform 23:
Li P, Zhang S, Wang J et al (2023) Uncovering the Secretion systems of Acinetobacter baumannii: structures and functions in pathogenicity and antibiotic resistance. Antibiotics 12:195. https://doi.org/10.3390/antibiotics12020195
doi: 10.3390/antibiotics12020195 pubmed: 36830106 pmcid: 9952577
Liang M, Fan Y, Zhang D et al (2022) Metagenomic next-generation sequencing for accurate diagnosis and management of lower respiratory tract infections. Int J Infect Dis 122:921–929. https://doi.org/10.1016/j.ijid.2022.07.060
doi: 10.1016/j.ijid.2022.07.060 pubmed: 35908723
Liu GY (2009) Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res 65:71. https://doi.org/10.1203/PDR.0b013e31819dc44d . R-77R
doi: 10.1203/PDR.0b013e31819dc44d
Liu K, Yang W, Dong X et al (2016) Inhalation study of Mycobacteriophage D29 Aerosol for mice by Endotracheal Route and nose-only exposure. J Aerosol Med Pulm Drug Deliv 29:393–405. https://doi.org/10.1089/jamp.2015.1233
doi: 10.1089/jamp.2015.1233 pubmed: 26745146
Lotfi M, Hamblin MR, Rezaei N (2020) COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 508:254–266. https://doi.org/10.1016/j.cca.2020.05.044
doi: 10.1016/j.cca.2020.05.044 pubmed: 32474009 pmcid: 7256510
Loughran AJ, Orihuela CJ, Tuomanen EI (2019) Streptococcus pneumoniae: Invasion and inflammation. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0004-2018
Luthra S, Rominski A, Sander P (2018) The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02179
Manohar P, Loh B, Athira S, et al (2020) Secondary Bacterial Infections During Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01434
Manoharan A, Manchanda V, Balasubramanian S et al (2017) Invasive pneumococcal disease in children aged younger than 5 years in India: a surveillance study. Lancet Infect Dis 17:305–312. https://doi.org/10.1016/S1473-3099(16)30466-2
doi: 10.1016/S1473-3099(16)30466-2 pubmed: 27956163
Martin LW, Robson CL, Watts AM et al (2018) Expression of Pseudomonas aeruginosa Antibiotic Resistance genes varies greatly during infections in cystic fibrosis patients. Antimicrob Agents Chemother 62. https://doi.org/10.1128/AAC.01789-18
Matesanz López C, Loras Gallego C, Cacho Calvo J et al (2021) Patients with non-tuberculous mycobacteria in respiratory samples: a 5-year epidemiological study. Rev Esp Quimioter 34:120–125. https://doi.org/10.37201/req/121.2020
doi: 10.37201/req/121.2020 pubmed: 33522212
Mazumder L, Shahab M, Islam S et al (2023) An immunoinformatics approach to epitope-based vaccine design against PspA in Streptococcus pneumoniae. J Genet Eng Biotechnol 21:57. https://doi.org/10.1186/s43141-023-00506-9
doi: 10.1186/s43141-023-00506-9 pubmed: 37166683 pmcid: 10173237
Mekuria S, Seyoum A, Ataro Z et al (2022) Prevalence, Antimicrobial Resistance, and Associated factors of Streptococcus pneumoniae colonization rate among old-age patients with respiratory tract infection attending Sheik Hassan Yebere Referral and Karamara General Hospitals, Jigjiga, Ethiopia. Can J Infect Dis Med Microbiol 2022:1–9. https://doi.org/10.1155/2022/9338251
doi: 10.1155/2022/9338251
Miller RR, Montoya V, Gardy JL et al (2013) Metagenomics for pathogen detection in public health. Genome Med 5:81. https://doi.org/10.1186/gm485
doi: 10.1186/gm485 pubmed: 24050114 pmcid: 3978900
Miriti DM, Muthini JM, Nyamache AK (2023) Study of bacterial respiratory infections and antimicrobial susceptibility profile among antibiotics naive outpatients visiting Meru teaching and referral hospital, Meru County, Kenya in 2018. BMC Microbiol 23:172. https://doi.org/10.1186/s12866-023-02905-x
doi: 10.1186/s12866-023-02905-x pubmed: 37386366 pmcid: 10308778
Miryala SK, Basu S, Naha A et al (2021) Identification of bioactive natural compounds as efficient inhibitors against Mycobacterium tuberculosis protein-targets: a molecular docking and molecular dynamics simulation study. J Mol Liq 341:117340. https://doi.org/10.1016/j.molliq.2021.117340
doi: 10.1016/j.molliq.2021.117340
Morris FC, Dexter C, Kostoulias X et al (2019) The mechanisms of Disease caused by Acinetobacter baumannii. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01601
Mücke P-A, Maaß S, Kohler TP et al (2020) Proteomic adaptation of Streptococcus pneumoniae to the human antimicrobial peptide LL-37. Microorganisms 8:413. https://doi.org/10.3390/microorganisms8030413
doi: 10.3390/microorganisms8030413 pubmed: 32183275 pmcid: 7143398
Naito Y, Moriyama K, Sawa T (2017) Anti-PcrV Immunization for Pseudomonas aeruginosa Pneumonia in Cystic Fibrosis. In: Progress in Understanding Cystic Fibrosis. InTech
Nakahashi-Ouchida R, Mori H, Yuki Y et al (2022) Induction of mucosal IgA–Mediated protective immunity against nontypeable Haemophilus influenzae infection by a Cationic Nanogel–based P6 nasal vaccine. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.819859
Nandhini P, Kumar P, Mickymaray S et al (2022) Recent developments in Methicillin-Resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotics 11:606. https://doi.org/10.3390/antibiotics11050606
doi: 10.3390/antibiotics11050606 pubmed: 35625250 pmcid: 9137690
Netea MG, Azam T, Lewis EC et al (2006) Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism. PLoS Med 3:e277. https://doi.org/10.1371/journal.pmed.0030277
doi: 10.1371/journal.pmed.0030277 pubmed: 16903774 pmcid: 1539091
Novotny L, Jurcisek J, Godfroid F et al (2006) Passive immunization with human anti-protein D antibodies induced by polysaccharide protein D conjugates protects chinchillas against otitis media after intranasal challenge with Haemophilus influenzae. Vaccine 24:4804–4811. https://doi.org/10.1016/j.vaccine.2006.03.021
doi: 10.1016/j.vaccine.2006.03.021 pubmed: 16616975
Okafor CN, Rewane A, Momodu II (2024) Bacillus Calmette Guerin
Oliveira D, Borges A, Simões M (2018) Staphylococcus aureus Toxins and their molecular activity in Infectious diseases. Toxins (Basel) 10:252. https://doi.org/10.3390/toxins10060252
doi: 10.3390/toxins10060252 pubmed: 29921792
Pabary R, Singh C, Morales S et al (2016) Antipseudomonal Bacteriophage reduces infective Burden and Inflammatory Response in Murine Lung. Antimicrob Agents Chemother 60:744–751. https://doi.org/10.1128/AAC.01426-15
doi: 10.1128/AAC.01426-15 pubmed: 26574007 pmcid: 4750668
Panditrao G, Bhowmick R, Meena C, Sarkar RR (2022) Emerging landscape of molecular interaction networks: opportunities, challenges and prospects. J Biosci 47:24. https://doi.org/10.1007/s12038-022-00253-y
doi: 10.1007/s12038-022-00253-y pubmed: 36210749 pmcid: 9018971
Paonessa JR, Shah RD, Pickens CI et al (2019) Rapid Detection of Methicillin-Resistant Staphylococcus aureus in BAL. Chest 155:999–1007. https://doi.org/10.1016/j.chest.2019.02.007
doi: 10.1016/j.chest.2019.02.007 pubmed: 30776365 pmcid: 6533464
Patarčić I, Gelemanović A, Kirin M et al (2015) The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci Rep 5:16119. https://doi.org/10.1038/srep16119
doi: 10.1038/srep16119 pubmed: 26524966 pmcid: 4630784
Peek SF, Ollivett TL, Divers TJ (2018) Respiratory diseases. Rebhun’s diseases of dairy cattle. Elsevier, pp 94–167
Peela SCM, Basu S, Sharma J et al (2023) Structure elucidation and Interaction Dynamics of MefA-MsrD Efflux Proteins in Streptococcus pneumoniae: impact on Macrolide susceptibility. ACS Omega 8:39454–39467. https://doi.org/10.1021/acsomega.3c05210
doi: 10.1021/acsomega.3c05210 pubmed: 37901543 pmcid: 10601061
Peltola V, Shih S-R, To KK-W (2020) Editorial: respiratory virus infection: recent advances. Front Med 7. https://doi.org/10.3389/fmed.2020.00257
Pivard M, Moreau K, Vandenesch F (2021) Staphylococcus aureus Arsenal to conquer the lower respiratory tract. https://doi.org/10.1128/mSphere.00059-21 . mSphere 6:
Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176. https://doi.org/10.1080/07853890701195262
doi: 10.1080/07853890701195262 pubmed: 17457715
Popoff MR (2024) Overview of bacterial protein toxins from pathogenic Bacteria: Mode of Action and insights into Evolution. Toxins (Basel) 16:182. https://doi.org/10.3390/toxins16040182
doi: 10.3390/toxins16040182 pubmed: 38668607
Prazak J, Iten M, Cameron DR et al (2019) Bacteriophages improve outcomes in experimental Staphylococcus aureus Ventilator-associated Pneumonia. Am J Respir Crit Care Med 200:1126–1133. https://doi.org/10.1164/rccm.201812-2372OC
doi: 10.1164/rccm.201812-2372OC pubmed: 31260638
Priyamvada P, Swetha RG, Dasgupta R et al (2024) Immunoinformatics strategy for designing a multi-epitope chimeric vaccine to combat Neisseria gonorrhoeae. Vacunas 25:385–402. https://doi.org/10.1016/j.vacun.2024.04.003
doi: 10.1016/j.vacun.2024.04.003
Pulzova L, Navratilova L, Comor L (2017) Alterations in outer membrane permeability Favor Drug-Resistant phenotype of Klebsiella pneumoniae. Microb Drug Resist 23:413–420. https://doi.org/10.1089/mdr.2016.0017
doi: 10.1089/mdr.2016.0017 pubmed: 27526080
Qin S, Xiao W, Zhou C et al (2022) Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 7:199. https://doi.org/10.1038/s41392-022-01056-1
doi: 10.1038/s41392-022-01056-1 pubmed: 35752612 pmcid: 9233671
Ragunathan A, Malathi K, Ramaiah S, Anbarasu A (2019) FtsA as a cidal target for Staphylococcus aureus: molecular docking and dynamics studies. J Cell Biochem 120:7751–7758. https://doi.org/10.1002/jcb.28049
doi: 10.1002/jcb.28049 pubmed: 30417432
Ranjbar A, Rasooli I, Jahangiri A, Ramezanalizadeh F (2022) Specific egg yolk antibody raised to biofilm associated protein (bap) is protective against murine pneumonia caused by Acinetobacter baumannii. Sci Rep 12:12576. https://doi.org/10.1038/s41598-022-16894-w
doi: 10.1038/s41598-022-16894-w pubmed: 35869264 pmcid: 9307575
Ratnatunga CN, Lutzky VP, Kupz A et al (2020) The rise of Non-tuberculosis Mycobacterial Lung Disease. https://doi.org/10.3389/fimmu.2020.00303 . Front Immunol 11:
Ravi M, Krishnasamy L, Krishnakumar S (2023) Antimicrobial susceptibility pattern of bacterial isolates in patients with lower respiratory tract infections. Int J Life Sci Pharma Res. https://doi.org/10.22376/ijlpr.2023.13.5.L371-L376
doi: 10.22376/ijlpr.2023.13.5.L371-L376
Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501. https://doi.org/10.3934/microbiol.2018.3.482
doi: 10.3934/microbiol.2018.3.482 pubmed: 31294229 pmcid: 6604941
Reynolds D, Kollef M (2021) The epidemiology and Pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81:2117–2131. https://doi.org/10.1007/s40265-021-01635-6
doi: 10.1007/s40265-021-01635-6 pubmed: 34743315 pmcid: 8572145
Rostock L, Driller R, Grätz S et al (2018) Molecular insights into antibiotic resistance - how a binding protein traps albicidin. Nat Commun 9:3095. https://doi.org/10.1038/s41467-018-05551-4
doi: 10.1038/s41467-018-05551-4 pubmed: 30082794 pmcid: 6078987
Roy A, Swetha RG, Basu S et al (2024) Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against herpes simplex virus type-1. 3 Biotech 14:176. https://doi.org/10.1007/s13205-024-04022-6
doi: 10.1007/s13205-024-04022-6 pubmed: 38855144
Saleri N, Ryan ET (2019) Respiratory infections. Travel Medicine. Elsevier, pp 527–537
Sandoval MM, Ruvinsky S, Palermo MC et al (2024) Antimicrobial resistance of Streptococcus pneumoniae from invasive pneumococcal diseases in latin American countries: a systematic review and meta-analysis. Front Public Heal 12. https://doi.org/10.3389/fpubh.2024.1337276
Sarshar M, Behzadi P, Scribano D et al (2021) Acinetobacter baumannii: an ancient commensal with weapons of a Pathogen. Pathogens 10:387. https://doi.org/10.3390/pathogens10040387
doi: 10.3390/pathogens10040387 pubmed: 33804894 pmcid: 8063835
Sastre-Femenia MÀ, Fernández-Muñoz A, Gomis-Font MA et al (2023) Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysis. Lancet Reg Heal - Eur 34:100736. https://doi.org/10.1016/j.lanepe.2023.100736
doi: 10.1016/j.lanepe.2023.100736
Sattar SBA, Sharma S (2024) Bacterial Pneumonia
Scafa-Udriste A, Popa M-I, Popa G-L (2023) Updates on Staphylococcal vaccines. Microbiol Res (Pavia) 15:137–151. https://doi.org/10.3390/microbiolres15010009
doi: 10.3390/microbiolres15010009
Sethi S (2010) Infection as a comorbidity of COPD. Eur Respir J 35:1209–1215. https://doi.org/10.1183/09031936.00081409
doi: 10.1183/09031936.00081409 pubmed: 20513910
Sharma A, Ahmad Farouk I, Lal SK (2021) COVID-19: a review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 13. https://doi.org/10.3390/v13020202
Sheikh-Mohamed S, Isho B, Chao GYC et al (2022) Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunol 15:799–808. https://doi.org/10.1038/s41385-022-00511-0
doi: 10.1038/s41385-022-00511-0 pubmed: 35468942 pmcid: 9037584
Shi J, Cheng J, Liu S et al (2024) Acinetobacter baumannii: an evolving and cunning opponent. Front Microbiol 15. https://doi.org/10.3389/fmicb.2024.1332108
Shiraz M, Lata S, Kumar P et al (2021) Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. Infect Genet Evol 94:105017. https://doi.org/10.1016/j.meegid.2021.105017
doi: 10.1016/j.meegid.2021.105017 pubmed: 34332157
Shriram V, Khare T, Bhagwat R et al (2018) Inhibiting bacterial drug efflux pumps via Phyto-Therapeutics to combat threatening Antimicrobial Resistance. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02990
Shrivastava S, Shrivastava P, Ramasamy J (2018) World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J Med Soc 32:76. https://doi.org/10.4103/jms.jms_25_17
doi: 10.4103/jms.jms_25_17
Singh R, Capalash N, Sharma P (2017) Immunoprotective potential of BamA, the outer membrane protein assembly factor, against MDR Acinetobacter baumannii. Sci Rep 7:12411. https://doi.org/10.1038/s41598-017-12789-3
doi: 10.1038/s41598-017-12789-3 pubmed: 28963492 pmcid: 5622086
Singh R, Capalash N, Sharma P (2022) Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review. 3 Biotech 12:85. https://doi.org/10.1007/s13205-022-03148-9
doi: 10.1007/s13205-022-03148-9 pubmed: 35261870 pmcid: 8890014
Slack MPE, Cripps AW, Grimwood K et al (2021) Invasive Haemophilus influenzae infections after 3 decades of hib protein Conjugate Vaccine Use. Clin Microbiol Rev 34:e0002821. https://doi.org/10.1128/CMR.00028-21
doi: 10.1128/CMR.00028-21 pubmed: 34076491
Stojanovic Z, Gonçalves-Carvalho F, Marín A et al (2022) Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19 – changing paradigms? ERJ Open Res 8:00113–02022. https://doi.org/10.1183/23120541.00113-2022
doi: 10.1183/23120541.00113-2022 pubmed: 36101788 pmcid: 9235056
Subramanian K, Henriques-Normark B, Normark S (2019) Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: from nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 21. https://doi.org/10.1111/cmi.13077
Sudhakar P, Machiels K, Verstockt B et al (2021) Computational Biology and Machine Learning Approaches to understand mechanistic microbiome-host interactions. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.618856
Swetha RG, Basu S, Ramaiah S, Anbarasu A (2022) Multi-epitope Vaccine for Monkeypox using Pan-genome and Reverse Vaccinology approaches. Viruses 14:2504. https://doi.org/10.3390/v14112504
doi: 10.3390/v14112504 pubmed: 36423113 pmcid: 9695528
Tam K, Torres VJ (2019) Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0039-2018
Teng F, Xiong X, Zhang S et al (2022) Efficacy Assessment of Phage Therapy in treating Staphylococcus aureus-Induced mastitis in mice. Viruses 14:620. https://doi.org/10.3390/v14030620
doi: 10.3390/v14030620 pubmed: 35337027 pmcid: 8954217
Tong SYC, Davis JS, Eichenberger E et al (2015) Staphylococcus aureus infections: Epidemiology, Pathophysiology, Clinical manifestations, and management. Clin Microbiol Rev 28:603–661. https://doi.org/10.1128/CMR.00134-14
doi: 10.1128/CMR.00134-14 pubmed: 26016486 pmcid: 4451395
Trinh TD, Zasowski EJ, Claeys KC et al (2017) Multidrug-resistant Pseudomonas aeruginosa lower respiratory tract infections in the intensive care unit: prevalence and risk factors. Diagn Microbiol Infect Dis 89:61–66. https://doi.org/10.1016/j.diagmicrobio.2017.06.009
doi: 10.1016/j.diagmicrobio.2017.06.009 pubmed: 28716451
Tristram S, Jacobs MR, Appelbaum PC (2007) Antimicrobial Resistance in Haemophilus influenzae. Clin Microbiol Rev 20:368–389. https://doi.org/10.1128/CMR.00040-06
doi: 10.1128/CMR.00040-06 pubmed: 17428889 pmcid: 1865592
Tsang RSW, Ulanova M (2017) The changing epidemiology of invasive Haemophilus influenzae disease: emergence and global presence of serotype a strains that may require a new vaccine for control. Vaccine 35:4270–4275. https://doi.org/10.1016/j.vaccine.2017.06.001
doi: 10.1016/j.vaccine.2017.06.001 pubmed: 28666758
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS (2022) Pathogenesis of the Pseudomonas aeruginosa Biofilm: a review. Pathogens 11:300. https://doi.org/10.3390/pathogens11030300
doi: 10.3390/pathogens11030300 pubmed: 35335624 pmcid: 8950561
Uppalapati SR, Sett A, Pathania R (2020) The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a two-Pronged Defense in Facilitating its success as a Potent Human Pathogen. https://doi.org/10.3389/fmicb.2020.589234 . Front Microbiol 11:
Uchil RR, Kohli GS, Katekhaye VM, Swami OC (2014) Strategies to combat antimicrobial resistance. J Clin Diagn Res 8:ME01-4. https://doi.org/10.7860/JCDR/2014/8925.4529
doi: 10.7860/JCDR/2014/8925.4529
Varghese R, Basu S, Neeravi A et al (2022) Emergence of Meropenem Resistance among Cefotaxime non-susceptible Streptococcus pneumoniae: evidence and challenges. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.810414
Vidor E, Hoffenbach A, Fletcher MA (2001) Haemophilus influenzae type b vaccine: reconstitution of lyophilised PRP-T vaccine with a pertussis-containing paediatric combination vaccine, or a change in the primary Series Immunisation schedule, May modify the serum Anti-PRP antibody responses. Curr Med Res Opin 17:197–209. https://doi.org/10.1185/0300799039117063
doi: 10.1185/0300799039117063 pubmed: 11900313
Vijayakumar S, Kumar H, Basu S et al (2024a) Changing Landscape of Antimicrobial Resistance in neonatal Sepsis: an in silico analyses of Multidrug Resistance in Klebsiella pneumoniae. Pediatr Infect Dis J. https://doi.org/10.1097/INF.0000000000004358
doi: 10.1097/INF.0000000000004358 pubmed: 38621154
Vijayakumar S, Swetha RG, Bakthavatchalam YD et al (2024b) Genomic investigation unveils colistin resistance mechanism in carbapenem-resistant Acinetobacter baumannii clinical isolates. Microbiol Spectr 12. https://doi.org/10.1128/spectrum.02511-23
Vollset SE, Ababneh HS, Abate YH et al (2024) Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the global burden of Disease Study 2021. Lancet 403:2204–2256. https://doi.org/10.1016/S0140-6736(24)00685-8
doi: 10.1016/S0140-6736(24)00685-8
Wachino J, Jin W, Kimura K, Arakawa Y (2019) Intercellular transfer of chromosomal antimicrobial resistance genes between Acinetobacter baumannii strains mediated by Prophages. Antimicrob Agents Chemother 63. https://doi.org/10.1128/AAC.00334-19
Wang Q, Liu C-G, Xu J et al (2021) Characteristics and antibiotic resistance of Haemophilus influenzae in children with Lower Respiratory Tract Infection in Chengdu, China. Jundishapur J Microbiol 14. https://doi.org/10.5812/jjm.114210
Weidmann MD, Berry GJ, Green DA, Wu F (2022) Prevalence and clinical disease severity of respiratory coinfections during the Coronavirus Disease 2019 Pandemic. Adv Mol Pathol 5:73–84. https://doi.org/10.1016/j.yamp.2022.07.003
doi: 10.1016/j.yamp.2022.07.003
Yang N, Jin X, Zhu C et al (2023) Subunit vaccines for Acinetobacter baumannii. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.1088130
Zeng X, Gu H, Peng L et al (2020) Transcriptome profiling of Lung Innate Immune responses potentially Associated with the pathogenesis of Acinetobacter baumannii Acute Lethal Pneumonia. https://doi.org/10.3389/fimmu.2020.00708 . Front Immunol 11:
Zhanel GG, Chung P, Adam H et al (2014) Ceftolozane/Tazobactam: a novel Cephalosporin/β-Lactamase inhibitor combination with activity against Multidrug-Resistant Gram-Negative Bacilli. Drugs 74:31–51. https://doi.org/10.1007/s40265-013-0168-2
doi: 10.1007/s40265-013-0168-2 pubmed: 24352909
Zhang F, Cheng W (2022) The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics 11:1215. https://doi.org/10.3390/antibiotics11091215
doi: 10.3390/antibiotics11091215 pubmed: 36139994 pmcid: 9495013
Zhang B-Z, Hu D, Dou Y et al (2021) Identification and Evaluation of Recombinant Outer Membrane Proteins as vaccine candidates against Klebsiella pneumoniae. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.730116
Zhang W, Zhou H, Jiang Y et al (2022) Acinetobacter baumannii outer membrane protein A induces pulmonary epithelial barrier dysfunction and bacterial translocation through the TLR2/IQGAP1 Axis. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.927955
Zuercher AW, Horn MP, Que JU et al (2006) Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis. FEMS Immunol Med Microbiol 47:302–308. https://doi.org/10.1111/j.1574-695X.2006.00103.x
doi: 10.1111/j.1574-695X.2006.00103.x pubmed: 16831219

Auteurs

Avani Panickar (A)

Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.

Anand Manoharan (A)

Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India.

Anand Anbarasu (A)

Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.

Sudha Ramaiah (S)

Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India. sudhaanand@vit.ac.in.
Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India. sudhaanand@vit.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH