An overview of Synlab SDN Biobank's quality control system.
Biobanking
Biobanks
Quality controls
Quality management system
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 08 2024
20 08 2024
Historique:
received:
04
06
2024
accepted:
14
08
2024
medline:
21
8
2024
pubmed:
21
8
2024
entrez:
20
8
2024
Statut:
epublish
Résumé
Biobanks are valuable service units that ensure the usage of high-quality biological samples. They contribute to translational research, and their support may improve future therapeutic approaches. They store biological samples that can be used to examine circulation biomarkers, immune cells, and immunohistochemistry aspects of illnesses and further in-depth examinations using NGS techniques. The IRCCS Synlab SDN Biobank has about 70,000 well-preserved cryopreserved human samples from various diseases, primarily oncological but also neurological and cardiovascular. These biospecimens were taken from 25,000 participants underwent imaging with a contrast agent. The goal is to propose quality control assays that meet the requirements of the international standard ISO 9001:2015 and ISO 20387:2020 accreditation. PBMCs viability was determined, and immune subset cells were analyzed by flow cytometry. Furthermore, the expression of ubiquitous miRNAs was used to assess plasma sample integrity. The quality controls demonstrated that the biological samples were correctly cryopreserved; the preservation of human biological samples did not affect the quality of the biological samples tested. Indeed, the cryopreserved PBMCs had a vitality of more than 80%, and the lymphocyte subsets could be selected for future immune cell investigations. Furthermore, miRNA expression was highest in thawed plasma samples compared to the positive and negative controls. We evaluated the quality of our randomly selected biobank-thawed human samples. Both PBMCs and plasma samples fulfill the high-quality standards needed for biomedical research, assuring their long-term preservation. However, further research is needed in the biobanking field to establish globally accepted procedures to confirm the quality of biological samples.
Identifiants
pubmed: 39164464
doi: 10.1038/s41598-024-70263-3
pii: 10.1038/s41598-024-70263-3
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
19303Subventions
Organisme : Ministero della Salute
ID : Ricerca corrente
Informations de copyright
© 2024. The Author(s).
Références
Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PloS Biol. https://doi.org/10.1371/journal.pbio.1002165 (2015).
doi: 10.1371/journal.pbio.1002165
pubmed: 26057340
pmcid: 4461318
Poldrack, R. The costs of reproducibility. Neuron 101, 11–14 (2019).
doi: 10.1016/j.neuron.2018.11.030
pubmed: 30605654
Browne, D., Miller, C. & Doolan, D. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front. Immunol. https://doi.org/10.3389/fimmu.2024.1382192 (2024).
doi: 10.3389/fimmu.2024.1382192
pubmed: 38812513
pmcid: 11133553
Castillo-Pelayo, T., Babinszky, S., LeBlanc, J. & Watson, P. H. The importance of biobanking in cancer research. Biopreservation Biobanking 13, 172–177. https://doi.org/10.1089/bio.2014.0061 (2015).
doi: 10.1089/bio.2014.0061
pubmed: 26035006
Ohn, H. M. Internal audit techniques for testing laboratories: ISO/IEC 17025:2017 perspective. Accredit. Qual. Assur. 29, 263–266. https://doi.org/10.1007/s00769-024-01592-z (2024).
doi: 10.1007/s00769-024-01592-z
Tarling, T. et al. Comparison and analysis of two internationally recognized biobanking standards. Biopreservation Biobanking 18, 82–89. https://doi.org/10.1089/bio.2019.0126 (2020).
doi: 10.1089/bio.2019.0126
pubmed: 31985265
Mirabelli, P. et al. SDN biobank: Bioresource of human samples associated with functional and/or morphological bioimaging results for the study of oncological, cardiological, neurological, and metabolic diseases. Open J. Bioresour. 4, 2–2 (2017).
doi: 10.5334/ojb.26
Schenk, M. et al. Biobanking of different body fluids within the frame of IVF-a standard operating procedure to improve reproductive biology research. J. Assist. Reprod. Genet. 34, 283–290. https://doi.org/10.1007/s10815-016-0847-5 (2017).
doi: 10.1007/s10815-016-0847-5
pubmed: 27889868
Litton, J. E. Launch of an infrastructure for Health Research: BBMRI-ERIC. Biopreservation Biobanking 16, 233–241. https://doi.org/10.1089/bio.2018.0027 (2018).
doi: 10.1089/bio.2018.0027
pubmed: 29781706
Linsen, L. et al. Biobank quality management in the BBMRI be network. Front. Med. https://doi.org/10.3389/fmed.2019.00141 (2019).
doi: 10.3389/fmed.2019.00141
López-Púa, Y. et al. Implementation of a quality management system in a liver transplant programme. BMJ Open Qual. https://doi.org/10.1136/bmjoq-2023-002440 (2023).
doi: 10.1136/bmjoq-2023-002440
pubmed: 37748820
pmcid: 10533803
Ornskov, D., Waldstrom, M., Thomsen, L. T., Munk, C. & Kjaer, S. K. Quality control of biospecimens in a Danish clinical cytology biobank. Biopreservation Biobanking 21, 184–190. https://doi.org/10.1089/bio.2021.0162 (2023).
doi: 10.1089/bio.2021.0162
pubmed: 35834640
World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA J. Am. Med. Assoc. 310, 2191–2194. https://doi.org/10.1001/jama.2013.281053 (2013).
doi: 10.1001/jama.2013.281053
Sourvinou, I., Markou, A. & Lianidou, E. Quantification of circulating miRNAs in plasma. J. Mol. Diagn. 15, 827–834 (2013).
doi: 10.1016/j.jmoldx.2013.07.005
pubmed: 23988620
Blondal, T. et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59, S1–S6. https://doi.org/10.1016/j.ymeth.2012.09.015 (2013).
doi: 10.1016/j.ymeth.2012.09.015
pubmed: 23036329
Santoro, J. et al. Influence of breast cancer extracellular vesicles on immune cell activation: A pilot study. Biol. Basel https://doi.org/10.3390/biology12121531 (2023).
doi: 10.3390/biology12121531
Buono, L. et al. A comprehensive analysis of the expression profiles of KCTD proteins in acute lymphoblastic leukemia: Evidence of selective expression of KCTD1 in T-ALL. J. Clin. Med. https://doi.org/10.3390/jcm12113669 (2023).
doi: 10.3390/jcm12113669
pubmed: 38202019
pmcid: 10779828
Smaldone, G. et al. The oncosuppressive properties of KCTD1: Its role in cell growth and mobility. Biol. Basel https://doi.org/10.3390/biology12030481 (2023).
doi: 10.3390/biology12030481
Marizzoni, M. et al. A peripheral signature of Alzheimer’s disease featuring microbiota-gut-brain axis markers. Alzheimers Res. Ther. https://doi.org/10.1186/s13195-023-01218-5 (2023).
doi: 10.1186/s13195-023-01218-5
pubmed: 37254223
pmcid: 10230724
Smaldone, G. et al. Caveolin-mediated internalization of Fmoc-FF nanogels in breast cancer cell lines. Pharmaceutics https://doi.org/10.3390/pharmaceutics15031026 (2023).
doi: 10.3390/pharmaceutics15031026
pubmed: 36986886
pmcid: 10051563
Iside, C. et al. Stratification of patients with coronary artery disease by circulating cytokines profile: A pilot study. J. Clin. Med. https://doi.org/10.3390/jcm12206649 (2023).
doi: 10.3390/jcm12206649
pubmed: 37892788
pmcid: 10253327
Buono, L. et al. Specific lncRNA signatures discriminate childhood acute leukaemias: A pilot study. Cancer Cell Int. https://doi.org/10.1186/s12935-022-02789-3 (2022).
doi: 10.1186/s12935-022-02789-3
pubmed: 36451206
pmcid: 9710039
Coppola, L. et al. An innovative approach for the evaluation of prolonged disorders of consciousness using NF-L and GFAP biomarkers: A pivotal study. Sci. Rep. https://doi.org/10.1038/s41598-022-21930-w (2022).
doi: 10.1038/s41598-022-21930-w
pubmed: 36344612
pmcid: 9640640
Franzese, M. et al. SARS-CoV-2 antibody responses before and after a third dose of the BNT162b2 vaccine in Italian healthcare workers aged ≤60 years: One year of surveillance. Front. Immunol. https://doi.org/10.3389/fimmu.2022.947187 (2022).
doi: 10.3389/fimmu.2022.947187
pubmed: 36703985
pmcid: 9566572
Coppola, L. et al. Identification of immune cell components in breast tissues by a multiparametric flow cytometry approach. Cancers https://doi.org/10.3390/cancers14163869 (2022).
doi: 10.3390/cancers14163869
pubmed: 36551642
pmcid: 9776977
Coppola, L. et al. KCTD15 Is overexpressed in her2+ positive breast cancer patients and its silencing attenuates proliferation in SKBR3 cell line. Diagnostics https://doi.org/10.3390/diagnostics12030591 (2022).
doi: 10.3390/diagnostics12030591
pubmed: 36010349
pmcid: 9407080
Smaldone, G. et al. KCTD15 deregulation is associated with alterations of the NF-κB signaling in both pathological and physiological model systems. Sci. Rep. https://doi.org/10.1038/s41598-021-97775-6 (2021).
doi: 10.1038/s41598-021-97775-6
pubmed: 34521919
pmcid: 8440651
Orlandella, F. M. et al. The lncRNA TEX41 is upregulated in pediatric B-cells acute lymphoblastic leukemia and it is necessary for leukemic cell growth. Biomark. Res. https://doi.org/10.1186/s40364-021-00307-7 (2021).
doi: 10.1186/s40364-021-00307-7
pubmed: 34233751
pmcid: 8261931
Baselice, S. et al. Impact of breast tumor onset on blood count, carcinoembryonic antigen, cancer antigen 15–3 and lymphoid subpopulations supported by automatic classification approach: A pilot study. Cancer Control https://doi.org/10.1177/10732748211048612 (2021).
doi: 10.1177/10732748211048612
pubmed: 34620015
pmcid: 8504274
Diaferia, C., Rosa, E., Accardo, A. & Morelli, G. Peptide-based hydrogels as delivery systems for doxorubicin. J. Pept. Sci. https://doi.org/10.1002/psc.3301 (2022).
doi: 10.1002/psc.3301
pubmed: 33491262
Orlandella, F. M. et al. miR-622 is a novel potential biomarker of breast carcinoma and impairs motility of breast cancer cells through targeting NUAK1 kinase. Br. J. Cancer 123, 426–437. https://doi.org/10.1038/s41416-020-0884-9 (2020).
doi: 10.1038/s41416-020-0884-9
pubmed: 32418991
pmcid: 7403386
Smaldone, G. et al. KCTD15 protein expression in peripheral blood and acute myeloid leukemia. Diagnostics 10, 11. https://doi.org/10.3390/diagnostics10060371 (2020).
doi: 10.3390/diagnostics10060371
Incoronato, M. et al. Circulating miRNAs in untreated breast cancer: An exploratory multimodality morpho-functional study. Cancers https://doi.org/10.3390/cancers11060876 (2019).
doi: 10.3390/cancers11060876
pubmed: 31252695
pmcid: 6678980
Coppola, L. et al. Purification of viable peripheral blood mononuclear cells for biobanking using a robotized liquid handling workstation. J. Transl. Med. https://doi.org/10.1186/s12967-019-2125-7 (2019).
doi: 10.1186/s12967-019-2125-7
pubmed: 31718655
pmcid: 6852781
Coppola, L. et al. Biobanking in health care: Evolution and future directions. J. Transl. Med. https://doi.org/10.1186/s12967-019-1922-3 (2019).
doi: 10.1186/s12967-019-1922-3
pubmed: 31718655
pmcid: 6852781
Servais, M. D. et al. Addressing the quality challenge of a human biospecimen biobank through the creation of a quality management system. PloS ONE https://doi.org/10.1371/journal.pone.0278780 (2022).
doi: 10.1371/journal.pone.0278780
pubmed: 36584180
pmcid: 9803146
Napolitani, F. et al. Biobankers: Treat the poison of invisibility with CoBRA, a systematic way of citing bioresources in journal articles. Biopreservation Biobanking 14, 350–352. https://doi.org/10.1089/bio.2015.0105 (2016).
doi: 10.1089/bio.2015.0105
pubmed: 27314833
pmcid: 4991644
Howard, H. C. et al. How to responsibly acknowledge research work in the era of big data and biobanks: Ethical aspects of the bioresource research impact factor (BRIF). J. Community Genet. 9, 169–176. https://doi.org/10.1007/s12687-017-0332-6 (2018).
doi: 10.1007/s12687-017-0332-6
pubmed: 28948532
Jain, K., Salamat-Miller, N. & Taylor, K. Freeze-thaw characterization process to minimize aggregation and enable drug product manufacturing of protein based therapeutics. Sci. Rep. https://doi.org/10.1038/s41598-021-90772-9 (2021).
doi: 10.1038/s41598-021-90772-9
pubmed: 34887447
pmcid: 8660890
Liu, Y. H. et al. Quality control system in an obstetrics and gynecology disease biobank. Biopreservation Biobanking 17, 27–38. https://doi.org/10.1089/bio.2018.0056 (2019).
doi: 10.1089/bio.2018.0056
pubmed: 30299984
Verberk, I. M. W., Nossent, E. J., Bontkes, H. J. & Teunissen, C. E. Pre-analytical sample handling effects on blood cytokine levels: Quality control of a COVID-19 biobank. Biomark. Med. 15, 987–997. https://doi.org/10.2217/bmm-2020-0770 (2021).
doi: 10.2217/bmm-2020-0770
pubmed: 34289718
pmcid: 8359910
Bhat, B. V. & Adhisivam, B. Human milk banking and challenges in quality control. Indian J. Pediatr. 85, 255–256. https://doi.org/10.1007/s12098-018-2635-y (2018).
doi: 10.1007/s12098-018-2635-y
Bravo, E. et al. Developing a guideline to standardize the citation of bioresources in journal articles (CoBRA). BMC Med. https://doi.org/10.1186/s12916-015-0266-y (2015).
doi: 10.1186/s12916-015-0266-y
pubmed: 25855867
pmcid: 4331335
Batheja, D. et al. Understanding the value of biobank attributes to researchers using a conjoint experiment. Sci. Rep. https://doi.org/10.1038/s41598-023-49394-6 (2023).
doi: 10.1038/s41598-023-49394-6
pubmed: 38123601
pmcid: 10733358