Endothelin-1 increases Na
HIF1α
NKCC1
TBI
astrocyte
brain edema
endothelin
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
revised:
07
08
2024
received:
06
03
2024
accepted:
09
08
2024
medline:
21
8
2024
pubmed:
21
8
2024
entrez:
21
8
2024
Statut:
aheadofprint
Résumé
Na
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Society for the Promotion of Science
ID : 20K16016
Organisme : Japan Society for the Promotion of Science
ID : 21K06609
Informations de copyright
© 2024 Wiley Periodicals LLC.
Références
Amlerova, Z., Chmelova, M., Anderova, M., & Vargova, L. (2024). Reactive gliosis in traumatic brain injury: A comprehensive review. Frontiers in Cellular Neuroscience, 18, 1335849. https://doi.org/10.3389/fncel.2024.1335849
Bae, Y. H., Joo, H., Bae, J., Hyeon, S. J., Her, S., Ko, E., Choi, H. G., Ryu, H., Hur, E. M., Bu, Y., & Lee, B. D. (2018). Brain injury induces HIF‐1α‐dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death & Disease, 9, 1125. https://doi.org/10.1038/s41419-018-1180-y
Beck, J., Lenart, B., Kintner, D. B., & Sun, D. (2003). Na‐K‐Cl cotransporter contributes to glutamate‐mediated excitotoxicity. The Journal of Neuroscience, 23, 5061–5068. https://doi.org/10.1523/JNEUROSCI.23-12-05061.2003
Blaesse, P., Airaksinen, M. S., Rivera, C., & Kaila, K. (2009). Cation‐chloride cotransporters and neuronal function. Neuron, 61, 820–838. https://doi.org/10.1016/j.neuron.2009.03.003
Chatfield, D. A., Brahmbhatt, D. H., Sharp, T., Perkes, I. E., Outrim, J. G., & Menon, D. K. (2011). Juguloarterial endothelin‐1 gradients after severe traumatic brain injury. Neurocritical Care, 14, 55–60. https://doi.org/10.1007/s12028-010-9413-7
Chen, H., Luo, J., Kintner, D. B., Shull, G. E., & Sun, D. (2005). Na+‐dependent chloride transporter (NKCC1)‐null mice exhibit less gray and white matter damage after focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 25, 54–66. https://doi.org/10.1038/sj.jcbfm.9600006
Halstead, M. R., & Geocadin, R. G. (2019). The medical management of cerebral edema: Past, present, and future therapies. Neurotherapeutics, 16, 1133–1148. https://doi.org/10.1007/s13311-019-00779-4
Hirayama, Y., & Koizumi, S. (2017). Hypoxia‐independent mechanisms of HIF‐1α expression in astrocytes after ischemic preconditioning. Glia, 65, 523–530. https://doi.org/10.1002/glia.23109
Huang, L. Q., Zhu, G. F., Deng, Y. Y., Jiang, W. Q., Fang, M., Chen, C. B., Cao, W., Wen, M. Y., Han, Y. L., & Zeng, H. K. (2014). Hypertonic saline alleviates cerebral edema by inhibiting microglia‐derived TNF‐α and IL‐1β‐induced Na‐K‐Cl cotransporter up‐regulation. Journal of Neuroinflammation, 11, 102. https://doi.org/10.1186/1742-2094-11-102
Hui, H., Rao, W., Zhang, L., Xie, Z., Peng, C., Su, N., Wang, K., Wang, L., Luo, P., Hao, Y. L., Zhang, S., & Fei, Z. (2016). Inhibition of Na+‐K+‐2Cl− Cotransporter‐1 attenuates traumatic brain injury‐induced neuronal apoptosis via regulation of Erk signaling. Neurochemistry International, 94, 23–31. https://doi.org/10.1016/j.neuint.2016.02.002
Ibla, J. C., Khoury, J., Kong, T., Robinson, A., & Colgan, S. P. (2006). Transcriptional repression of Na‐K‐2Cl cotransporter NKCC1 by hypoxia‐inducible factor‐1. American Journal of Physiology. Cell Physiology, 291, C282–C289. https://doi.org/10.1152/ajpcell.00564.2005
Jayakumar, A. R., Panickar, K. S., Curtis, K. M., Tong, X. Y., Moriyama, M., & Norenberg, M. D. (2011). Na‐K‐Cl cotransporter‐1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. Journal of Neurochemistry, 117, 437–448. https://doi.org/10.1111/j.1471-4159.2011.07211.x
Jha, R. M., Kochanek, P. M., & Simard, J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 145, 230–246. https://doi.org/10.1016/j.neuropharm.2018.08.004
Kahle, K. T., Simard, J. M., Staley, K. J., Nahed, B. V., Jones, P. S., & Sun, D. (2009). Molecular mechanisms of ischemic cerebral edema: Role of electroneutral ion transport. Physiology (Bethesda, Md.), 24, 257–265. https://doi.org/10.1152/physiol.00015.2009
Kaila, K., Price, T. J., Payne, J. A., Puskarjov, M., & Voipio, J. (2014). Cation‐chloride cotransporters in neuronal development, plasticity and disease. Nature Reviews. Neuroscience, 15, 637–654. https://doi.org/10.1038/nrn3819
Kanaka, C., Ohno, K., Okabe, A., Kuriyama, K., Itoh, T., Fukuda, A., & Sato, K. (2001). The differential expression patterns of messenger RNAs encoding K‐Cl cotransporters (KCC1,2) and Na‐K‐2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience, 104, 933–946. https://doi.org/10.1016/s0306-4522(01)00149-x
Koyama, Y., Kotani, M., Sawamura, T., Kuribayashi, M., Konishi, R., & Michinaga, S. (2013). Different actions of endothelin‐1 on chemokine production in rat cultured astrocytes: Reduction of CX3CL1/fractalkine and an increase in CCL2/MCP‐1 and CXCL1/CINC‐1. Journal of Neuroinflammation, 10, 51. https://doi.org/10.1186/1742-2094-10-51
Koyama, Y., Maebara, Y., Hayashi, M., Nagae, R., Tokuyama, S., & Michinaga, S. (2012). Endothelins reciprocally regulate VEGF‐A and angiopoietin‐1 production in cultured rat astrocytes: Implications on astrocytic proliferation. Glia, 60, 1954–1963. https://doi.org/10.1002/glia.22411
Koyama, Y., Takemura, M., Fujiki, K., Ishikawa, N., Shigenaga, Y., & Baba, A. (1999). BQ788, an endothelin ETB receptor antagonist, attenuates stab wound injury‐induced reactive astrocytes in rat brain. Glia, 26, 268–271. https://doi.org/10.1002/(sici)1098-1136(199905)26:3<268::aid-glia8>3.0.co;2-g
Koyama, Y., & Tanaka, K. (2010). Intracerebroventricular administration of an endothelin ETB‐receptor agonist increases expression of matrix metalloproteinase‐2 and ‐9 in rat brain. Journal of Pharmacological Sciences, 114, 433–443. https://doi.org/10.1254/jphs.10195fp
Kurki, S. N., Uvarov, P., Pospelov, A. S., Trontti, K., Hübner, A. K., Srinivasan, R., Watanabe, M., Hovatta, I., Hübner, C. A., Kaila, K., & Virtanen, M. A. (2023). Expression patterns of NKCC1 in neurons and non‐neuronal cells during cortico‐hippocampal development. Cerebral Cortex, 33, 5906–5923. https://doi.org/10.1093/cercor/bhac470
Larsen, B. R., Assentoft, M., Cotrina, M. L., Hua, S. Z., Nedergaard, M., Kaila, K., Voipio, J., & MacAulay, N. (2014). Contributions of the Na+/K+‐ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia, 62, 608–622. https://doi.org/10.1002/glia.22629
LeComte, M. D., Shimada, I. S., Sherwin, C., & Spees, J. L. (2015). Notch1‐STAT3‐ETBR signaling axis controls reactive astrocyte proliferation after brain injury. Proceedings of the National Academy of Sciences of the United States of America, 112, 8726–8731. https://doi.org/10.1073/pnas.1501029112
Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., & Kim, K. W. (2004). Hypoxia‐inducible factor (HIF‐1) alpha: Its protein stability and biological functions. Experimental & Molecular Medicine, 36, 1–12. https://doi.org/10.1038/emm.2004.1
Maegele, M., Wafaisade, A., Peiniger, S., & Braun, M. (2011). The role of endothelin and endothelin antagonists in traumatic brain injury: A review of the literature. Neurological Research, 33, 119–126. https://doi.org/10.1179/016164111X12881719352093
Maier, B., Lehnert, M., Laurer, H. L., & Marzi, I. (2007). Biphasic elevation in cerebrospinal fluid and plasma concentrations of endothelin 1 after traumatic brain injury in human patients. Shock, 27, 610–614. https://doi.org/10.1097/shk.0b013e31802f9eaf
Michinaga, S., Inoue, A., Yamamoto, H., Ryu, R., Inoue, A., Mizuguchi, H., & Koyama, Y. (2020). Endothelin receptor antagonists alleviate blood–brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology, 175, 108182. https://doi.org/10.1016/j.neuropharm.2020.108182
Michinaga, S., Kimura, A., Hatanaka, S., Minami, S., Asano, A., Ikushima, Y., Matsui, S., Toriyama, Y., Fujii, M., & Koyama, Y. (2018). Delayed administration of BQ788, an ETB antagonist, after experimental traumatic brain injury promotes recovery of blood–brain barrier function and a reduction of cerebral edema in mice. Journal of Neurotrauma, 35, 1481–1494. https://doi.org/10.1089/neu.2017.5421
Michinaga, S., & Koyama, Y. (2019). Dual roles of astrocyte‐derived factors in regulation of blood–brain barrier function after brain damage. International Journal of Molecular Sciences, 20, 571. https://doi.org/10.3390/ijms20030571
Michinaga, S., Tanab, A., Nakaya, R., Fukutome, C., Inoue, A., Iwane, A., Minato, Y., Tujiuchi, Y., Miyake, D., Mizuguchi, H., & Koyama, Y. (2020). Angiopoietin‐1/Tie‐2 signal after focal traumatic brain injury is potentiated by BQ788, an ETB receptor antagonist, in the mouse cerebrum: Involvement in recovery of blood–brain barrier function. Journal of Neurochemistry, 154, 330–348. https://doi.org/10.1111/jnc.14957
Nguyen, T. D., Ishibashi, M., Sinha, A. S., Watanabe, M., Kato, D., Horiuchi, H., Wake, H., & Fukuda, A. (2023). Astrocytic NKCC1 inhibits seizures by buffering Cl− and antagonizing neuronal NKCC1 at GABAergic synapses. Epilepsia, 64, 3389–3403. https://doi.org/10.1111/epi.17784
O'Donnell, M. E., Tran, L., Lam, T. I., Liu, X. B., & Anderson, S. E. (2004). Bumetanide inhibition of the blood‐brain barrier Na‐K‐Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. Journal of Cerebral Blood Flow and Metabolism, 24, 1046–1056. https://doi.org/10.1097/01.WCB.0000130867.32663.90
Peters, C. M., Rogers, S. D., Pomonis, J. D., Egnaczyk, G. F., Keyser, C. P., Schmidt, J. A., Ghilardi, J. R., Maggio, J. E., & Mantyh, P. W. (2003). Endothelin receptor expression in the normal and injured spinal cord: Potential involvement in injury‐induced ischemia and gliosis. Experimental Neurology, 180, 1–13. https://doi.org/10.1016/s0014-4886(02)00023-7
Reed, M. M., & Blazer‐Yost, B. (2022). Channels and transporters in astrocyte volume regulation in health and disease. Cellular Physiology and Biochemistry, 56, 12–30. https://doi.org/10.33594/000000495
Rogers, S. D., Peters, C. M., Pomonis, J. D., Hagiwara, H., Ghilardi, J. R., & Mantyh, P. W. (2003). Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia, 41, 180–190. https://doi.org/10.1002/glia.10173
Sagher, O., Jin, Y., Thai, Q. A., Fergus, A., Kassell, N. F., & Lee, K. S. (1994). Cerebral microvascular responses to endothelins: The role of ETA receptors. Brain Research, 658, 179–184. https://doi.org/10.1016/s0006-8993(09)90024-5
Salonia, R., Empey, P. E., Poloyac, S. M., Wisniewski, S. R., Klamerus, M., Ozawa, H., Wagner, A. K., Ruppel, R., Bell, M. J., Feldman, K., Adelson, P. D., Clark, R. S., & Kochanek, P. M. (2010). Endothelin‐1 is increased in cerebrospinal fluid and associated with unfavorable outcomes in children after severe traumatic brain injury. Journal of Neurotrauma, 27, 1819–1825. https://doi.org/10.1089/neu.2010.1402
Savard, A., Borgogno, M., De Vivo, M., & Cancedda, L. (2021). Pharmacological tools to target NKCC1 in brain disorders. Trends in Pharmacological Sciences, 42, 1009–1034. https://doi.org/10.1016/j.tips.2021.09.005
Schaible, E. V., Windschügl, J., Bobkiewicz, W., Kaburov, Y., Dangel, L., Krämer, T., Huang, C., Sebastiani, A., Luh, C., Werner, C., Engelhard, K., Thal, S. C., & Schäfer, M. K. (2014). 2‐Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF‐1α response after traumatic brain injury in mice. Journal of Neurochemistry, 129, 940–954. https://doi.org/10.1111/jnc.12708
Spinella, F., Rosanò, L., Del Duca, M., Di Castro, V., Nicotra, M. R., Natali, P. G., & Bagnato, A. (2010). Endothelin‐1 inhibits prolyl hydroxylase domain 2 to activate hypoxia‐inducible factor‐1alpha in melanoma cells. PLoS One, 5, e11241. https://doi.org/10.1371/journal.pone.0011241
Virtanen, M. A., Uvarov, P., Hübner, C. A., & Kaila, K. (2020). NKCC1, an elusive molecular target in brain development: Making sense of the existing data. Cells, 9, 2607. https://doi.org/10.3390/cells9122607
Wang, F., Wang, X., Shapiro, L. A., Cotrina, M. L., Liu, W., Wang, E. W., Gu, S., Wang, W., He, X., Nedergaard, M., & Huang, J. H. (2017). NKCC1 up‐regulation contributes to early post‐traumatic seizures and increased post‐traumatic seizure susceptibility. Brain Structure & Function, 222, 1543–1556. https://doi.org/10.1007/s00429-016-1292-z
Wang, K., Jing, Y., Xu, C., Zhao, J., Gong, Q., & Chen, S. (2020). HIF‐1α and VEGF are involved in deferoxamine‐ameliorated traumatic brain injury. The Journal of Surgical Research, 246, 419–426. https://doi.org/10.1016/j.jss.2019.09.023
Xiong, A., Li, J., Xiong, R., Xia, Y., Jiang, X., Cao, F., Lu, H., Xu, J., & Shan, F. (2022). Inhibition of HIF‐1α‐AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model. Scientific Reports, 12, 2701. https://doi.org/10.1038/s41598-022-06773-9
Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews. Neuroscience, 14, 128–142. https://doi.org/10.1038/nrn3407
Yan, Y., Dempsey, R. J., Flemmer, A., Forbush, B., & Sun, D. (2003). Inhibition of Na+‐K+‐Cl− cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Research, 961, 22–31. https://doi.org/10.1016/s0006-8993(02)03832-5
Yang, X. L., Zeng, M. L., Shao, L., Jiang, G. T., Cheng, J. J., Chen, T. X., Han, S., Yin, J., Liu, W. H., He, X. H., & Peng, B. W. (2019). NFAT5 and HIF‐1α coordinate to regulate NKCC1 expression in hippocampal neurons after hypoxia‐ischemia. Frontiers in Cell and Development Biology, 7, 339. https://doi.org/10.3389/fcell.2019.00339
Yu, J. C., Pickard, J. D., & Davenport, A. P. (1995). Endothelin ETA receptor expression in human cerebrovascular smooth muscle cells. British Journal of Pharmacology, 116, 2441–2446. https://doi.org/10.1111/j.1476-5381.1995.tb15093.x
Yuan, D., Guan, S., Wang, Z., Ni, H., Ding, D., Xu, W., & Li, G. (2021). HIF‐1α aggravated traumatic brain injury by NLRP3 inflammasome‐mediated pyroptosis and activation of microglia. Journal of Chemical Neuroanatomy, 116, 101994. https://doi.org/10.1016/j.jchemneu.2021.101994
Zhang, J., Pu, H., Zhang, H., Wei, Z., Jiang, X., Xu, M., Zhang, L., Zhang, W., Liu, J., Meng, H., Stetler, R. A., Sun, D., Chen, J., Gao, Y., & Chen, L. (2017). Inhibition of Na+‐K+‐2Cl‐ cotransporter attenuates blood‐brain‐barrier disruption in a mouse model of traumatic brain injury. Neurochemistry International, 111, 23–31. https://doi.org/10.1016/j.neuint.2017.05.020
Zhang, M., Cui, Z., Cui, H., Cao, Y., Zhong, C., & Wang, Y. (2016). Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neuroscience, 17, 60. https://doi.org/10.1186/s12868-016-0295-2
Zhang, M., Cui, Z., Cui, H., Wang, Y., & Zhong, C. (2017). Astaxanthin protects astrocytes against trauma‐induced apoptosis through inhibition of NKCC1 expression via the NF‐κB signaling pathway. BMC Neuroscience, 18, 42. https://doi.org/10.1186/s12868-017-0358-z
Zoerle, T., Ilodigwe, D. C., Wan, H., Lakovic, K., Sabri, M., Ai, J., & Macdonald, R. L. (2012). Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: Systematic review and meta‐analysis. Journal of Cerebral Blood Flow and Metabolism, 32, 1645–1658. https://doi.org/10.1038/jcbfm.2012.57