The periosteum provides a stromal defence against cancer invasion into the bone.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
21 Aug 2024
Historique:
received: 04 08 2023
accepted: 12 07 2024
medline: 22 8 2024
pubmed: 22 8 2024
entrez: 21 8 2024
Statut: aheadofprint

Résumé

The periosteum is the layer of cells that covers nearly the entire surface of every bone. Upon infection, injury or malignancy the bone surface undergoes new growth-the periosteal reaction-but the mechanism and physiological role of this process remain unknown

Identifiants

pubmed: 39169177
doi: 10.1038/s41586-024-07822-1
pii: 10.1038/s41586-024-07822-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Duhamel, H. L. Sur une racine qui a la faculte de triendre en rouge les os des animaux vivants. Mem. Acad. R. Sci. Paris 52, 1–13 (1739).
Rana, R. S., Wu, J. S. & Eisenberg, R. L. Periosteal reaction. Am. J. Roentgenol. 193, W259–W272 (2009).
doi: 10.2214/AJR.09.3300
Vilchez Mercedes, S. A. et al. Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21, 592–604 (2021).
pubmed: 34239104 doi: 10.1038/s41568-021-00376-8
Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).
pubmed: 12724734 doi: 10.1038/nrc1075
Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).
pubmed: 29345251 doi: 10.1038/nrdp.2017.105
Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).
pubmed: 29735645 pmcid: 5984693 doi: 10.1158/1535-7163.MCT-17-0646
Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer 17, 38–53 (2017).
pubmed: 27932800 doi: 10.1038/nrc.2016.115
Hermann, C. D. et al. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J. Exp. Med. 218, e20210911 (2021).
pubmed: 34533565 pmcid: 8480668 doi: 10.1084/jem.20210911
Shimoda, M. et al. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. 16, 889–901 (2014).
pubmed: 25150980 doi: 10.1038/ncb3021
Grünwald, B. et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011–1024.e1017 (2016).
pubmed: 27506299 doi: 10.1053/j.gastro.2016.07.043
Osawa, Y. et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J. Clin. Invest. 123, 834–843 (2013).
pubmed: 23298833 pmcid: 3561803
Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 6, 93 (2020).
Tsukasaki, M. et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat. Commun. 13, 4166 (2022).
pubmed: 35851381 pmcid: 9293991 doi: 10.1038/s41467-022-31592-x
Park, J. et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J. Clin. Invest. 129, 5381–5399 (2019).
pubmed: 31487270 pmcid: 6877303 doi: 10.1172/JCI125336
Takaoka, M. et al. Ha-Ras
pubmed: 15273725 doi: 10.1038/sj.onc.1207923
Nakagawa, H. et al. The targeting of the cyclin D1 oncogene by an Epstein–Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene 14, 1185–1190 (1997).
pubmed: 9121767 doi: 10.1038/sj.onc.1200937
Sun, X. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).
pubmed: 34594005 pmcid: 8595610 doi: 10.1038/s41565-021-00962-9
Hashimoto, K., Sato, S., Ochi, H., Takeda, S. & Futakuchi, M. Calvarial bone implantation and. Bio Protoc. 9, e3151 (2019).
pubmed: 33654960 pmcid: 7854057 doi: 10.21769/BioProtoc.3151
Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).
pubmed: 29440427 pmcid: 5834702 doi: 10.1073/pnas.1717363115
Network, C. G. A. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).
doi: 10.1038/nature14129
Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).
pubmed: 32086381 pmcid: 7219211 doi: 10.1126/sciimmunol.aay6017
Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019).
pubmed: 31186549 doi: 10.1038/s41577-019-0178-8
Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).
pubmed: 30250253 pmcid: 6193396 doi: 10.1038/s41586-018-0554-8
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).
pubmed: 21606941 doi: 10.1038/nrc3064
Otani, S. et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 41, 683–691 (2022).
pubmed: 34803166 doi: 10.1038/s41388-021-02120-w
Julien, A. et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res. 37, 1545–1561 (2022).
pubmed: 35652423 doi: 10.1002/jbmr.4616
Eckfeld, C. et al. TIMP-1 is a novel ligand of amyloid precursor protein and triggers a proinflammatory phenotype in human monocytes. J. Cell Biol. 222, e202206095 (2023).
pubmed: 36629908 pmcid: 9837626 doi: 10.1083/jcb.202206095
Hirasawa, T. & Kuratani, S. Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett. 1, 2 (2015).
pubmed: 26605047 pmcid: 4604106 doi: 10.1186/s40851-014-0007-7
Shimada, A. et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1639 (2013).
pubmed: 23535660 doi: 10.1038/ncomms2643
Kajita, M. et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat. Commun. 5, 4428 (2014).
pubmed: 25079702 doi: 10.1038/ncomms5428
Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).
pubmed: 1116643 doi: 10.1016/0012-1606(75)90330-9
de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).
pubmed: 15066286 doi: 10.1016/S0092-8674(04)00214-4
Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467 (2009).
pubmed: 19287376 doi: 10.1038/ncb1853
Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).
pubmed: 17803905 doi: 10.1016/j.cell.2007.07.025
Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).
pubmed: 23643243 pmcid: 3969854 doi: 10.1016/j.cell.2013.04.025
Tsukasaki, M. et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab. 2, 1382–1390 (2020).
pubmed: 33288951 doi: 10.1038/s42255-020-00318-y
Asano, T. et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat. Metab. 1, 868–875 (2019).
pubmed: 32694743 doi: 10.1038/s42255-019-0104-1
Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).
pubmed: 29453398 pmcid: 5816021 doi: 10.1038/s41467-018-03147-6
Tsukasaki, M. et al. OPG production matters where it happened. Cell Rep. 32, 108124 (2020).
pubmed: 32905763 doi: 10.1016/j.celrep.2020.108124
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
pubmed: 23586463 pmcid: 3637064 doi: 10.1186/1471-2105-14-128
Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, e90 (2021).
pubmed: 33780170 pmcid: 8152575 doi: 10.1002/cpz1.90
The Galaxy Community The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).
doi: 10.1093/nar/gkac247
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Yan, M. et al. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat. Immunol. 23, 1330–1341 (2022).
pubmed: 35999392 doi: 10.1038/s41590-022-01285-0
Akimoto, M., Maruyama, R., Takamaru, H., Ochiya, T. & Takenaga, K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 7, 13589 (2016).
pubmed: 27882929 pmcid: 5123057 doi: 10.1038/ncomms13589
Kazu. nakamurakazu/Stromal-defence-against-cancer-by-the-periosteum: stromal defence against cancer by the periosteum. Zenodo https://doi.org/10.5281/zenodo.12204268 (2024).

Auteurs

Kazutaka Nakamura (K)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Masayuki Tsukasaki (M)

Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan. tsuka-im@m.u-tokyo.ac.jp.

Takaaki Tsunematsu (T)

Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.

Minglu Yan (M)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Yutaro Ando (Y)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.

Nam Cong-Nhat Huynh (NC)

Laboratory of Oral-Maxillofacial Biology, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam.

Kyoko Hashimoto (K)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.

Qiao Gou (Q)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.

Ryunosuke Muro (R)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.

Ayumi Itabashi (A)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.

Takahiro Iguchi (T)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.

Kazuo Okamoto (K)

Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.

Takashi Nakamura (T)

Department of Biochemistry, Tokyo Dental College, Tokyo, Japan.

Kenta Nakano (K)

Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Tadashi Okamura (T)

Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Tomoya Ueno (T)

Department of Molecular Tumor Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

Kosei Ito (K)

Department of Molecular Tumor Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.

Naozumi Ishimaru (N)

Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

Kazuto Hoshi (K)

Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Hiroshi Takayanagi (H)

Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan. takayana@m.u-tokyo.ac.jp.

Classifications MeSH