The periosteum provides a stromal defence against cancer invasion into the bone.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
04
08
2023
accepted:
12
07
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
aheadofprint
Résumé
The periosteum is the layer of cells that covers nearly the entire surface of every bone. Upon infection, injury or malignancy the bone surface undergoes new growth-the periosteal reaction-but the mechanism and physiological role of this process remain unknown
Identifiants
pubmed: 39169177
doi: 10.1038/s41586-024-07822-1
pii: 10.1038/s41586-024-07822-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Duhamel, H. L. Sur une racine qui a la faculte de triendre en rouge les os des animaux vivants. Mem. Acad. R. Sci. Paris 52, 1–13 (1739).
Rana, R. S., Wu, J. S. & Eisenberg, R. L. Periosteal reaction. Am. J. Roentgenol. 193, W259–W272 (2009).
doi: 10.2214/AJR.09.3300
Vilchez Mercedes, S. A. et al. Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21, 592–604 (2021).
pubmed: 34239104
doi: 10.1038/s41568-021-00376-8
Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).
pubmed: 12724734
doi: 10.1038/nrc1075
Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).
pubmed: 29345251
doi: 10.1038/nrdp.2017.105
Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).
pubmed: 29735645
pmcid: 5984693
doi: 10.1158/1535-7163.MCT-17-0646
Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer 17, 38–53 (2017).
pubmed: 27932800
doi: 10.1038/nrc.2016.115
Hermann, C. D. et al. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J. Exp. Med. 218, e20210911 (2021).
pubmed: 34533565
pmcid: 8480668
doi: 10.1084/jem.20210911
Shimoda, M. et al. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. 16, 889–901 (2014).
pubmed: 25150980
doi: 10.1038/ncb3021
Grünwald, B. et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011–1024.e1017 (2016).
pubmed: 27506299
doi: 10.1053/j.gastro.2016.07.043
Osawa, Y. et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J. Clin. Invest. 123, 834–843 (2013).
pubmed: 23298833
pmcid: 3561803
Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 6, 93 (2020).
Tsukasaki, M. et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat. Commun. 13, 4166 (2022).
pubmed: 35851381
pmcid: 9293991
doi: 10.1038/s41467-022-31592-x
Park, J. et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J. Clin. Invest. 129, 5381–5399 (2019).
pubmed: 31487270
pmcid: 6877303
doi: 10.1172/JCI125336
Takaoka, M. et al. Ha-Ras
pubmed: 15273725
doi: 10.1038/sj.onc.1207923
Nakagawa, H. et al. The targeting of the cyclin D1 oncogene by an Epstein–Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene 14, 1185–1190 (1997).
pubmed: 9121767
doi: 10.1038/sj.onc.1200937
Sun, X. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).
pubmed: 34594005
pmcid: 8595610
doi: 10.1038/s41565-021-00962-9
Hashimoto, K., Sato, S., Ochi, H., Takeda, S. & Futakuchi, M. Calvarial bone implantation and. Bio Protoc. 9, e3151 (2019).
pubmed: 33654960
pmcid: 7854057
doi: 10.21769/BioProtoc.3151
Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).
pubmed: 29440427
pmcid: 5834702
doi: 10.1073/pnas.1717363115
Network, C. G. A. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).
doi: 10.1038/nature14129
Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).
pubmed: 32086381
pmcid: 7219211
doi: 10.1126/sciimmunol.aay6017
Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019).
pubmed: 31186549
doi: 10.1038/s41577-019-0178-8
Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).
pubmed: 30250253
pmcid: 6193396
doi: 10.1038/s41586-018-0554-8
Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).
pubmed: 21606941
doi: 10.1038/nrc3064
Otani, S. et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 41, 683–691 (2022).
pubmed: 34803166
doi: 10.1038/s41388-021-02120-w
Julien, A. et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res. 37, 1545–1561 (2022).
pubmed: 35652423
doi: 10.1002/jbmr.4616
Eckfeld, C. et al. TIMP-1 is a novel ligand of amyloid precursor protein and triggers a proinflammatory phenotype in human monocytes. J. Cell Biol. 222, e202206095 (2023).
pubmed: 36629908
pmcid: 9837626
doi: 10.1083/jcb.202206095
Hirasawa, T. & Kuratani, S. Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett. 1, 2 (2015).
pubmed: 26605047
pmcid: 4604106
doi: 10.1186/s40851-014-0007-7
Shimada, A. et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1639 (2013).
pubmed: 23535660
doi: 10.1038/ncomms2643
Kajita, M. et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat. Commun. 5, 4428 (2014).
pubmed: 25079702
doi: 10.1038/ncomms5428
Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).
pubmed: 1116643
doi: 10.1016/0012-1606(75)90330-9
de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).
pubmed: 15066286
doi: 10.1016/S0092-8674(04)00214-4
Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467 (2009).
pubmed: 19287376
doi: 10.1038/ncb1853
Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).
pubmed: 17803905
doi: 10.1016/j.cell.2007.07.025
Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).
pubmed: 23643243
pmcid: 3969854
doi: 10.1016/j.cell.2013.04.025
Tsukasaki, M. et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab. 2, 1382–1390 (2020).
pubmed: 33288951
doi: 10.1038/s42255-020-00318-y
Asano, T. et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat. Metab. 1, 868–875 (2019).
pubmed: 32694743
doi: 10.1038/s42255-019-0104-1
Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).
pubmed: 29453398
pmcid: 5816021
doi: 10.1038/s41467-018-03147-6
Tsukasaki, M. et al. OPG production matters where it happened. Cell Rep. 32, 108124 (2020).
pubmed: 32905763
doi: 10.1016/j.celrep.2020.108124
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
pubmed: 23586463
pmcid: 3637064
doi: 10.1186/1471-2105-14-128
Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, e90 (2021).
pubmed: 33780170
pmcid: 8152575
doi: 10.1002/cpz1.90
The Galaxy Community The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).
doi: 10.1093/nar/gkac247
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095
pmcid: 3346182
doi: 10.1038/nbt.1754
Yan, M. et al. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat. Immunol. 23, 1330–1341 (2022).
pubmed: 35999392
doi: 10.1038/s41590-022-01285-0
Akimoto, M., Maruyama, R., Takamaru, H., Ochiya, T. & Takenaga, K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 7, 13589 (2016).
pubmed: 27882929
pmcid: 5123057
doi: 10.1038/ncomms13589
Kazu. nakamurakazu/Stromal-defence-against-cancer-by-the-periosteum: stromal defence against cancer by the periosteum. Zenodo https://doi.org/10.5281/zenodo.12204268 (2024).