NAC guides a ribosomal multienzyme complex for nascent protein processing.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
18
11
2023
accepted:
18
07
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
aheadofprint
Résumé
Approximately 40% of the mammalian proteome undergoes N-terminal methionine excision and acetylation, mediated sequentially by methionine aminopeptidase (MetAP) and N-acetyltransferase A (NatA), respectively
Identifiants
pubmed: 39169182
doi: 10.1038/s41586-024-07846-7
pii: 10.1038/s41586-024-07846-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Aksnes, H., Drazic, A., Marie, M. & Arnesen, T. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci 41, 746–760 (2016).
pubmed: 27498224
doi: 10.1016/j.tibs.2016.07.005
Wiedmann, B., Sakai, H., Davis, T. A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).
pubmed: 8047162
doi: 10.1038/370434a0
Gamerdinger, M. et al. Early scanning of nascent polypeptides inside the ribosomal tunnel by NAC. Mol. Cell 75, 996–1006.e8 (2019).
pubmed: 31377116
doi: 10.1016/j.molcel.2019.06.030
Arnesen, T. et al. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell. Biol. 30, 1898–1909 (2010).
pubmed: 20154145
pmcid: 2849469
doi: 10.1128/MCB.01199-09
Gottlieb, L. & Marmorstein, R. Structure of human NatA and its regulation by the huntingtin interacting protein HYPK. Structure 26, 925–935.e8 (2018).
pubmed: 29754825
pmcid: 6031454
doi: 10.1016/j.str.2018.04.003
Arnesen, T. et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl Acad. Sci. USA 106, 8157–8162 (2009).
pubmed: 19420222
pmcid: 2688859
doi: 10.1073/pnas.0901931106
Oh, J.-H., Hyun, J.-Y. & Varshavsky, A. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway. Proc. Natl Acad. Sci. USA 114, E4370–E4379 (2017).
pubmed: 28515311
pmcid: 5465900
doi: 10.1073/pnas.1705898114
Monda, J. K. et al. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21, 42–53 (2013).
pubmed: 23201271
doi: 10.1016/j.str.2012.10.013
Scott, D. C. et al. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat. Chem. Biol. 13, 850–857 (2017).
pubmed: 28581483
pmcid: 5577376
doi: 10.1038/nchembio.2386
Behnia, R., Panic, B., Whyte, J. R. C. & Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6, 405–413 (2004).
pubmed: 15077113
doi: 10.1038/ncb1120
Hwang, C.-S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).
pubmed: 20110468
pmcid: 4259118
doi: 10.1126/science.1183147
Shemorry, A., Hwang, C.-S. & Varshavsky, A. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551 (2013).
pubmed: 23603116
pmcid: 3665649
doi: 10.1016/j.molcel.2013.03.018
Gottlieb, L., Guo, L., Shorter, J. & Marmorstein, R. N-alpha-acetylation of Huntingtin protein increases its propensity to aggregate. J. Biol. Chem. 297, 101363 (2021).
pubmed: 34732320
pmcid: 8640455
doi: 10.1016/j.jbc.2021.101363
Vinueza-Gavilanes, R. et al. N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity. Neurobiol. Dis. 137, 104781 (2020).
pubmed: 31991248
doi: 10.1016/j.nbd.2020.104781
Kang, L., Janowska, M. K., Moriarty, G. M. & Baum, J. Mechanistic insight into the relationship between N-terminal acetylation of α-synuclein and fibril formation rates by NMR and fluorescence. PLoS ONE 8, e75018 (2013).
pubmed: 24058647
pmcid: 3776725
doi: 10.1371/journal.pone.0075018
Rope, A. F. et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89, 28–43 (2011).
pubmed: 21700266
pmcid: 3135802
doi: 10.1016/j.ajhg.2011.05.017
Bader, I. et al. Severe syndromic ID and skewed X-inactivation in a girl with NAA10 dysfunction and a novel heterozygous de novo NAA10 p.(His16Pro) variant — a case report. BMC Med. Genet. 21, 153 (2020).
pubmed: 32698785
pmcid: 7374887
doi: 10.1186/s12881-020-01091-1
Lee, C.-F. et al. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J. Clin. Invest. 120, 2920–2930 (2010).
pubmed: 20592467
pmcid: 2912195
doi: 10.1172/JCI42275
Kim, S. M. et al. NAA10 as a new prognostic marker for cancer progression. Int. J. Mol. Sci. 21, E8010 (2020).
doi: 10.3390/ijms21218010
Bu, B. et al. N-terminal acetylation preserves α-synuclein from oligomerization by blocking intermolecular hydrogen bonds. ACS Chem. Neurosci. 8, 2145–2151 (2017).
pubmed: 28741930
doi: 10.1021/acschemneuro.7b00250
Lima, V., de, A., do Nascimento, L. A., Eliezer, D. & Follmer, C. Role of Parkinson’s disease-linked mutations and N-terminal acetylation on the oligomerization of α-synuclein induced by 3,4-dihydroxyphenylacetaldehyde. ACS Chem. Neurosci. 10, 690–703 (2019).
pubmed: 30352158
doi: 10.1021/acschemneuro.8b00498
Deng, S. & Marmorstein, R. Protein N-terminal acetylation: structural basis, mechanism, versatility, and regulation. Trends Biochem. Sci. 46, 15–27 (2021).
pubmed: 32912665
doi: 10.1016/j.tibs.2020.08.005
Gautschi, M. et al. The yeast N
pubmed: 14517307
pmcid: 230319
doi: 10.1128/MCB.23.20.7403-7414.2003
Magin, R. S., Deng, S., Zhang, H., Cooperman, B. & Marmorstein, R. Probing the interaction between NatA and the ribosome for co-translational protein acetylation. PLoS ONE 12, e0186278 (2017).
pubmed: 29016658
pmcid: 5634638
doi: 10.1371/journal.pone.0186278
Varland, S. & Arnesen, T. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Res. Notes 11, 404 (2018).
pubmed: 29929531
pmcid: 6013942
doi: 10.1186/s13104-018-3513-4
Knorr, A. G. et al. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat. Struct. Mol. Biol. 26, 35–39 (2019).
pubmed: 30559462
doi: 10.1038/s41594-018-0165-y
Sandikci, A. et al. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat. Struct. Mol. Biol. 20, 843–850 (2013).
pubmed: 23770820
doi: 10.1038/nsmb.2615
Mullen, J. R. et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8, 2067–2075 (1989).
pubmed: 2551674
pmcid: 401092
doi: 10.1002/j.1460-2075.1989.tb03615.x
Deng, S., McTiernan, N., Wei, X., Arnesen, T. & Marmorstein, R. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK. Nat. Commun. 11, 818 (2020).
pubmed: 32042062
pmcid: 7010799
doi: 10.1038/s41467-020-14584-7
Weyer, F. A. et al. Structural basis of HypK regulating N-terminal acetylation by the NatA complex. Nat. Commun. 8, 15726 (2017).
pubmed: 28585574
pmcid: 5467210
doi: 10.1038/ncomms15726
Miklánková, P. et al. HYPK promotes the activity of the N
pubmed: 35704578
pmcid: 9200280
doi: 10.1126/sciadv.abn6153
Gong, X. et al. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. Mol. Plant 15, 740–754 (2022).
pubmed: 35381198
doi: 10.1016/j.molp.2022.03.001
Jomaa, A. et al. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science 375, 839–844 (2022).
pubmed: 35201867
pmcid: 7612438
doi: 10.1126/science.abl6459
Gamerdinger, M. et al. NAC controls cotranslational N-terminal methionine excision in eukaryotes. Science 380, 1238–1243 (2023).
pubmed: 37347872
doi: 10.1126/science.adg3297
Song, D., Peng, K., Palmer, B. E. & Lee, F. S. The ribosomal chaperone NACA recruits PHD2 to cotranslationally modify HIF-α. EMBO J. 41, e112059 (2022).
pubmed: 36219563
pmcid: 9670199
doi: 10.15252/embj.2022112059
Hsieh, H.-H., Lee, J. H., Chandrasekar, S. & Shan, S.-O. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat. Commun. 11, 5840 (2020).
pubmed: 33203865
pmcid: 7673040
doi: 10.1038/s41467-020-19548-5
Connell, E., Darios, F., Peak-Chew, S., Soloviev, M. & Davletov, B. N-terminal acetylation of the neuronal protein SNAP-25 is revealed by the SMI81 monoclonal antibody. Biochemistry 48, 9582–9589 (2009).
pubmed: 19747004
doi: 10.1021/bi9012403
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Garrabrant, T. et al. Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2) fail to inhibit endothelial cell proliferation or formation of microvessels from rat aortic rings in vitro. Angiogenesis 7, 91–96 (2004).
pubmed: 15516829
doi: 10.1007/s10456-004-6089-7
Yang, C.-I., Hsieh, H.-H. & Shan, S.-O. Timing and specificity of cotranslational nascent protein modification in bacteria. Proc. Natl Acad. Sci. USA 116, 23050–23060 (2019).
pubmed: 31666319
pmcid: 6859321
doi: 10.1073/pnas.1912264116
Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).
pubmed: 11832227
doi: 10.1016/S0896-6273(02)00583-4
Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).
pubmed: 22056041
pmcid: 3225288
doi: 10.1016/j.cell.2011.10.002
Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).
pubmed: 24487582
doi: 10.1038/nmeth.2834
Minoia, M. et al. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis. Nat. Commun. 15, 1382 (2024).
pubmed: 38360885
pmcid: 10869706
doi: 10.1038/s41467-024-45645-w
Liszczak, G. et al. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat. Struct. Mol. Biol. 20, 1098–1105 (2013).
pubmed: 23912279
pmcid: 3766382
doi: 10.1038/nsmb.2636
Yin, J., Lin, A. J., Golan, D. E. & Walsh, C. T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).
pubmed: 17406245
doi: 10.1038/nprot.2006.43
Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. in Protein Secretion, Vol. 619 (ed. Economou, A.) 339–363 (Humana Press, 2010).
Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).
pubmed: 16236721
pmcid: 1276090
doi: 10.1073/pnas.0507705102
Walker, K. W. & Bradshaw, R. A. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis. J. Biol. Chem. 274, 13403–13409 (1999).
pubmed: 10224104
doi: 10.1074/jbc.274.19.13403
Gottlieb, L. & Marmorstein, R. Biochemical and structural analysis of N-terminal acetyltransferases. Methods Enzymol. 626, 271–299 (2019).
pubmed: 31606079
pmcid: 6884420
doi: 10.1016/bs.mie.2019.07.016
Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57264 (2020).
pubmed: 32758356
pmcid: 7452723
doi: 10.7554/eLife.57264
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533
doi: 10.1016/j.jmb.2003.07.013
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
pubmed: 4366476
pmcid: 1213120
doi: 10.1093/genetics/77.1.71
Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).
pubmed: 8531738
doi: 10.1016/S0091-679X(08)61399-0
Frøkjær-Jensen, C. et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat. Methods 11, 529–534 (2014).
pubmed: 24820376
pmcid: 4126194
doi: 10.1038/nmeth.2889
Redemann, S. et al. Codon adaptation-based control of protein expression in C. elegans. Nat. Methods 8, 250–252 (2011).
pubmed: 21278743
doi: 10.1038/nmeth.1565
Ketting, R. F., Tijsterman, M. & Plasterk, R. H. A. Introduction of double-stranded RNA in C. elegans by feeding. CSH Protoc. 2006, pdb.prot4317 (2006).
pubmed: 22485693