NAC guides a ribosomal multienzyme complex for nascent protein processing.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
21 Aug 2024
Historique:
received: 18 11 2023
accepted: 18 07 2024
medline: 22 8 2024
pubmed: 22 8 2024
entrez: 21 8 2024
Statut: aheadofprint

Résumé

Approximately 40% of the mammalian proteome undergoes N-terminal methionine excision and acetylation, mediated sequentially by methionine aminopeptidase (MetAP) and N-acetyltransferase A (NatA), respectively

Identifiants

pubmed: 39169182
doi: 10.1038/s41586-024-07846-7
pii: 10.1038/s41586-024-07846-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Aksnes, H., Drazic, A., Marie, M. & Arnesen, T. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci 41, 746–760 (2016).
pubmed: 27498224 doi: 10.1016/j.tibs.2016.07.005
Wiedmann, B., Sakai, H., Davis, T. A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).
pubmed: 8047162 doi: 10.1038/370434a0
Gamerdinger, M. et al. Early scanning of nascent polypeptides inside the ribosomal tunnel by NAC. Mol. Cell 75, 996–1006.e8 (2019).
pubmed: 31377116 doi: 10.1016/j.molcel.2019.06.030
Arnesen, T. et al. The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell. Biol. 30, 1898–1909 (2010).
pubmed: 20154145 pmcid: 2849469 doi: 10.1128/MCB.01199-09
Gottlieb, L. & Marmorstein, R. Structure of human NatA and its regulation by the huntingtin interacting protein HYPK. Structure 26, 925–935.e8 (2018).
pubmed: 29754825 pmcid: 6031454 doi: 10.1016/j.str.2018.04.003
Arnesen, T. et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl Acad. Sci. USA 106, 8157–8162 (2009).
pubmed: 19420222 pmcid: 2688859 doi: 10.1073/pnas.0901931106
Oh, J.-H., Hyun, J.-Y. & Varshavsky, A. Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway. Proc. Natl Acad. Sci. USA 114, E4370–E4379 (2017).
pubmed: 28515311 pmcid: 5465900 doi: 10.1073/pnas.1705898114
Monda, J. K. et al. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21, 42–53 (2013).
pubmed: 23201271 doi: 10.1016/j.str.2012.10.013
Scott, D. C. et al. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat. Chem. Biol. 13, 850–857 (2017).
pubmed: 28581483 pmcid: 5577376 doi: 10.1038/nchembio.2386
Behnia, R., Panic, B., Whyte, J. R. C. & Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6, 405–413 (2004).
pubmed: 15077113 doi: 10.1038/ncb1120
Hwang, C.-S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).
pubmed: 20110468 pmcid: 4259118 doi: 10.1126/science.1183147
Shemorry, A., Hwang, C.-S. & Varshavsky, A. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551 (2013).
pubmed: 23603116 pmcid: 3665649 doi: 10.1016/j.molcel.2013.03.018
Gottlieb, L., Guo, L., Shorter, J. & Marmorstein, R. N-alpha-acetylation of Huntingtin protein increases its propensity to aggregate. J. Biol. Chem. 297, 101363 (2021).
pubmed: 34732320 pmcid: 8640455 doi: 10.1016/j.jbc.2021.101363
Vinueza-Gavilanes, R. et al. N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity. Neurobiol. Dis. 137, 104781 (2020).
pubmed: 31991248 doi: 10.1016/j.nbd.2020.104781
Kang, L., Janowska, M. K., Moriarty, G. M. & Baum, J. Mechanistic insight into the relationship between N-terminal acetylation of α-synuclein and fibril formation rates by NMR and fluorescence. PLoS ONE 8, e75018 (2013).
pubmed: 24058647 pmcid: 3776725 doi: 10.1371/journal.pone.0075018
Rope, A. F. et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 89, 28–43 (2011).
pubmed: 21700266 pmcid: 3135802 doi: 10.1016/j.ajhg.2011.05.017
Bader, I. et al. Severe syndromic ID and skewed X-inactivation in a girl with NAA10 dysfunction and a novel heterozygous de novo NAA10 p.(His16Pro) variant — a case report. BMC Med. Genet. 21, 153 (2020).
pubmed: 32698785 pmcid: 7374887 doi: 10.1186/s12881-020-01091-1
Lee, C.-F. et al. hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J. Clin. Invest. 120, 2920–2930 (2010).
pubmed: 20592467 pmcid: 2912195 doi: 10.1172/JCI42275
Kim, S. M. et al. NAA10 as a new prognostic marker for cancer progression. Int. J. Mol. Sci. 21, E8010 (2020).
doi: 10.3390/ijms21218010
Bu, B. et al. N-terminal acetylation preserves α-synuclein from oligomerization by blocking intermolecular hydrogen bonds. ACS Chem. Neurosci. 8, 2145–2151 (2017).
pubmed: 28741930 doi: 10.1021/acschemneuro.7b00250
Lima, V., de, A., do Nascimento, L. A., Eliezer, D. & Follmer, C. Role of Parkinson’s disease-linked mutations and N-terminal acetylation on the oligomerization of α-synuclein induced by 3,4-dihydroxyphenylacetaldehyde. ACS Chem. Neurosci. 10, 690–703 (2019).
pubmed: 30352158 doi: 10.1021/acschemneuro.8b00498
Deng, S. & Marmorstein, R. Protein N-terminal acetylation: structural basis, mechanism, versatility, and regulation. Trends Biochem. Sci. 46, 15–27 (2021).
pubmed: 32912665 doi: 10.1016/j.tibs.2020.08.005
Gautschi, M. et al. The yeast N
pubmed: 14517307 pmcid: 230319 doi: 10.1128/MCB.23.20.7403-7414.2003
Magin, R. S., Deng, S., Zhang, H., Cooperman, B. & Marmorstein, R. Probing the interaction between NatA and the ribosome for co-translational protein acetylation. PLoS ONE 12, e0186278 (2017).
pubmed: 29016658 pmcid: 5634638 doi: 10.1371/journal.pone.0186278
Varland, S. & Arnesen, T. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Res. Notes 11, 404 (2018).
pubmed: 29929531 pmcid: 6013942 doi: 10.1186/s13104-018-3513-4
Knorr, A. G. et al. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat. Struct. Mol. Biol. 26, 35–39 (2019).
pubmed: 30559462 doi: 10.1038/s41594-018-0165-y
Sandikci, A. et al. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat. Struct. Mol. Biol. 20, 843–850 (2013).
pubmed: 23770820 doi: 10.1038/nsmb.2615
Mullen, J. R. et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8, 2067–2075 (1989).
pubmed: 2551674 pmcid: 401092 doi: 10.1002/j.1460-2075.1989.tb03615.x
Deng, S., McTiernan, N., Wei, X., Arnesen, T. & Marmorstein, R. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK. Nat. Commun. 11, 818 (2020).
pubmed: 32042062 pmcid: 7010799 doi: 10.1038/s41467-020-14584-7
Weyer, F. A. et al. Structural basis of HypK regulating N-terminal acetylation by the NatA complex. Nat. Commun. 8, 15726 (2017).
pubmed: 28585574 pmcid: 5467210 doi: 10.1038/ncomms15726
Miklánková, P. et al. HYPK promotes the activity of the N
pubmed: 35704578 pmcid: 9200280 doi: 10.1126/sciadv.abn6153
Gong, X. et al. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. Mol. Plant 15, 740–754 (2022).
pubmed: 35381198 doi: 10.1016/j.molp.2022.03.001
Jomaa, A. et al. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting. Science 375, 839–844 (2022).
pubmed: 35201867 pmcid: 7612438 doi: 10.1126/science.abl6459
Gamerdinger, M. et al. NAC controls cotranslational N-terminal methionine excision in eukaryotes. Science 380, 1238–1243 (2023).
pubmed: 37347872 doi: 10.1126/science.adg3297
Song, D., Peng, K., Palmer, B. E. & Lee, F. S. The ribosomal chaperone NACA recruits PHD2 to cotranslationally modify HIF-α. EMBO J. 41, e112059 (2022).
pubmed: 36219563 pmcid: 9670199 doi: 10.15252/embj.2022112059
Hsieh, H.-H., Lee, J. H., Chandrasekar, S. & Shan, S.-O. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat. Commun. 11, 5840 (2020).
pubmed: 33203865 pmcid: 7673040 doi: 10.1038/s41467-020-19548-5
Connell, E., Darios, F., Peak-Chew, S., Soloviev, M. & Davletov, B. N-terminal acetylation of the neuronal protein SNAP-25 is revealed by the SMI81 monoclonal antibody. Biochemistry 48, 9582–9589 (2009).
pubmed: 19747004 doi: 10.1021/bi9012403
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Garrabrant, T. et al. Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2) fail to inhibit endothelial cell proliferation or formation of microvessels from rat aortic rings in vitro. Angiogenesis 7, 91–96 (2004).
pubmed: 15516829 doi: 10.1007/s10456-004-6089-7
Yang, C.-I., Hsieh, H.-H. & Shan, S.-O. Timing and specificity of cotranslational nascent protein modification in bacteria. Proc. Natl Acad. Sci. USA 116, 23050–23060 (2019).
pubmed: 31666319 pmcid: 6859321 doi: 10.1073/pnas.1912264116
Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).
pubmed: 11832227 doi: 10.1016/S0896-6273(02)00583-4
Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).
pubmed: 22056041 pmcid: 3225288 doi: 10.1016/j.cell.2011.10.002
Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).
pubmed: 24487582 doi: 10.1038/nmeth.2834
Minoia, M. et al. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis. Nat. Commun. 15, 1382 (2024).
pubmed: 38360885 pmcid: 10869706 doi: 10.1038/s41467-024-45645-w
Liszczak, G. et al. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nat. Struct. Mol. Biol. 20, 1098–1105 (2013).
pubmed: 23912279 pmcid: 3766382 doi: 10.1038/nsmb.2636
Yin, J., Lin, A. J., Golan, D. E. & Walsh, C. T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).
pubmed: 17406245 doi: 10.1038/nprot.2006.43
Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. in Protein Secretion, Vol. 619 (ed. Economou, A.) 339–363 (Humana Press, 2010).
Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).
pubmed: 16236721 pmcid: 1276090 doi: 10.1073/pnas.0507705102
Walker, K. W. & Bradshaw, R. A. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis. J. Biol. Chem. 274, 13403–13409 (1999).
pubmed: 10224104 doi: 10.1074/jbc.274.19.13403
Gottlieb, L. & Marmorstein, R. Biochemical and structural analysis of N-terminal acetyltransferases. Methods Enzymol. 626, 271–299 (2019).
pubmed: 31606079 pmcid: 6884420 doi: 10.1016/bs.mie.2019.07.016
Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57264 (2020).
pubmed: 32758356 pmcid: 7452723 doi: 10.7554/eLife.57264
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
pubmed: 14568533 doi: 10.1016/j.jmb.2003.07.013
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
pubmed: 4366476 pmcid: 1213120 doi: 10.1093/genetics/77.1.71
Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).
pubmed: 8531738 doi: 10.1016/S0091-679X(08)61399-0
Frøkjær-Jensen, C. et al. Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat. Methods 11, 529–534 (2014).
pubmed: 24820376 pmcid: 4126194 doi: 10.1038/nmeth.2889
Redemann, S. et al. Codon adaptation-based control of protein expression in C. elegans. Nat. Methods 8, 250–252 (2011).
pubmed: 21278743 doi: 10.1038/nmeth.1565
Ketting, R. F., Tijsterman, M. & Plasterk, R. H. A. Introduction of double-stranded RNA in C. elegans by feeding. CSH Protoc. 2006, pdb.prot4317 (2006).
pubmed: 22485693

Auteurs

Alfred M Lentzsch (AM)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Denis Yudin (D)

Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.

Martin Gamerdinger (M)

Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany.

Sowmya Chandrasekar (S)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Laurenz Rabl (L)

Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany.

Alain Scaiola (A)

Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.

Elke Deuerling (E)

Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany.

Nenad Ban (N)

Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland. ban@mol.biol.ethz.ch.

Shu-Ou Shan (SO)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA. sshan@caltech.edu.

Classifications MeSH