Systematic identification of minor histocompatibility antigens predicts outcomes of allogeneic hematopoietic cell transplantation.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
21 Aug 2024
21 Aug 2024
Historique:
received:
10
07
2023
accepted:
02
07
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
21
8
2024
Statut:
aheadofprint
Résumé
T cell alloreactivity against minor histocompatibility antigens (mHAgs)-polymorphic peptides resulting from donor-recipient (D-R) disparity at sites of genetic polymorphisms-is at the core of the therapeutic effect of allogeneic hematopoietic cell transplantation (allo-HCT). Despite the crucial role of mHAgs in graft-versus-leukemia (GvL) and graft-versus-host disease (GvHD) reactions, it remains challenging to consistently link patient-specific mHAg repertoires to clinical outcomes. Here we devise an analytic framework to systematically identify mHAgs, including their detection on HLA class I ligandomes and functional verification of their immunogenicity. The method relies on the integration of polymorphism detection by whole-exome sequencing of germline DNA from D-R pairs with organ-specific transcriptional- and proteome-level expression. Application of this pipeline to 220 HLA-matched allo-HCT D-R pairs demonstrated that total and organ-specific mHAg load could independently predict the occurrence of acute GvHD and chronic pulmonary GvHD, respectively, and defined promising GvL targets, confirmed in a validation cohort of 58 D-R pairs, for the prevention or treatment of post-transplant disease recurrence.
Identifiants
pubmed: 39169264
doi: 10.1038/s41587-024-02348-3
pii: 10.1038/s41587-024-02348-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
ID : HL158505
Organisme : NHLBI NIH HHS
ID : R01 HL095791
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL158504
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL158505
Pays : United States
Organisme : Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
ID : SCOR-22937-22
Organisme : NCI NIH HHS
ID : P01 CA229092
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : 5R25CA174650
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R50CA251956
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U24CA270823
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : U01CA27140
Organisme : American Association for Cancer Research (American Association for Cancer Research, Inc.)
ID : 20-40-46-CIER
Organisme : Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
ID : U19 Al1051731
Organisme : NIAID NIH HHS
ID : U19 AI174967
Pays : United States
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).
pubmed: 16641398
doi: 10.1056/NEJMra052638
Griffioen, M., van Bergen, C. A. & Falkenburg, J. H. Autosomal minor histocompatibility antigens: how genetic variants create diversity in immune targets. Front. Immunol. 7, 100 (2016).
pubmed: 27014279
pmcid: 4791598
doi: 10.3389/fimmu.2016.00100
Mutis, T., Xagara, A. & Spaapen, R. M. The connection between minor h antigens and neoantigens and the missing link in their prediction. Front. Immunol. 11, 1162 (2020).
pubmed: 32670277
pmcid: 7326952
doi: 10.3389/fimmu.2020.01162
Zeiser, R. & Blazar, B. R. Acute graft-versus-host disease—biologic process, prevention, and therapy. N. Engl. J. Med. 377, 2167–2179 (2017).
pubmed: 29171820
pmcid: 6034180
doi: 10.1056/NEJMra1609337
Zeiser, R. & Blazar, B. R. Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N. Engl. J. Med. 377, 2565–2579 (2017).
pubmed: 29281578
doi: 10.1056/NEJMra1703472
Aljurf, M. et al. Worldwide network for blood & marrow transplantation (WBMT) special article, challenges facing emerging alternate donor registries. Bone Marrow Transplant. 54, 1179–1188 (2019).
pubmed: 30778127
pmcid: 6760540
doi: 10.1038/s41409-019-0476-6
Cieri, N., Maurer, K. & Wu, C. J. 60 years young: the evolving role of allogeneic hematopoietic stem cell transplantation in cancer immunotherapy. Cancer Res. 81, 4373–4384 (2021).
pubmed: 34108142
pmcid: 8416782
doi: 10.1158/0008-5472.CAN-21-0301
Bolon, Y., Atshan, R., Allbee-Johnson, M., Estrada-Merly, N. & Lee, S. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR summary slides. CIBMTR https://cibmtr.org/CIBMTR/Resources/Summary-Slides-Reports (2022).
Spellman, S. R. Hematology 2022—what is complete HLA match in 2022? Hematology Am. Soc. Hematol. Educ. Program 2022, 83–89 (2022).
pubmed: 36485162
pmcid: 9821192
doi: 10.1182/hematology.2022000326
Goulmy, E., Gratama, J. W., Blokland, E., Zwaan, F. E. & van Rood, J. J. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 302, 159–161 (1983).
pubmed: 6186923
doi: 10.1038/302159a0
Wang, W. et al. Human H–Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269, 1588–1590 (1995).
pubmed: 7667640
doi: 10.1126/science.7667640
Den Haan, J. M. et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995).
doi: 10.1126/science.7539551
Goulmy, E., Termijtelen, A., Bradley, B. A. & van Rood, J. J. Y-antigen killing by T cells of women is restricted by HLA. Nature 266, 544–545 (1977).
pubmed: 300847
doi: 10.1038/266544a0
Goulmy, E. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med. 334, 281–285 (1996).
pubmed: 8532022
doi: 10.1056/NEJM199602013340501
Spierings, E. et al. Multicenter analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 19, 1244–1253 (2013).
pubmed: 23756210
doi: 10.1016/j.bbmt.2013.06.001
Grumet, F. C. et al. CD31 mismatching affects marrow transplantation outcome. Biol. Blood Marrow Transplant. 7, 503–512 (2001).
pubmed: 11669217
doi: 10.1053/bbmt.2001.v7.pm11669217
McCarroll, S. A. et al. Donor–recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease. Nat. Genet. 41, 1341–1344 (2009).
pubmed: 19935662
pmcid: 2804745
doi: 10.1038/ng.490
Spellman, S. et al. Effects of mismatching for minor histocompatibility antigens on clinical outcomes in HLA-matched, unrelated hematopoietic stem cell transplants. Biol. Blood Marrow Transplant. 15, 856–863 (2009).
pubmed: 19539218
pmcid: 2721718
doi: 10.1016/j.bbmt.2009.03.018
Kogler, G. et al. Recipient cytokine genotypes for TNF-α and IL-10 and the minor histocompatibility antigens HY and CD31 codon 125 are not associated with occurrence or severity of acute GVHD in unrelated cord blood transplantation: a retrospective analysis. Transplantation 74, 1167–1175 (2002).
pubmed: 12438965
doi: 10.1097/00007890-200210270-00019
Martin, P. J. et al. A model of minor histocompatibility antigens in allogeneic hematopoietic cell transplantation. Front. Immunol. 12, 782152 (2021).
pubmed: 34868058
pmcid: 8636906
doi: 10.3389/fimmu.2021.782152
Story, C. M. et al. Genetics of HLA peptide presentation and impact on outcomes in HLA-matched allogeneic hematopoietic cell transplantation. Transplant. Cell Ther. 27, 591–599 (2021).
pubmed: 33882342
pmcid: 8343993
doi: 10.1016/j.jtct.2021.04.003
Warren, E. H. et al. Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood 120, 2796–2806 (2012).
pubmed: 22859606
pmcid: 3466963
doi: 10.1182/blood-2012-04-347286
Bykova, N. A., Malko, D. B. & Efimov, G. A. In silico analysis of the minor histocompatibility antigen landscape based on the 1000 Genomes project. Front. Immunol. 9, 1819 (2018).
pubmed: 30166983
pmcid: 6105694
doi: 10.3389/fimmu.2018.01819
Jadi, O. et al. Associations of minor histocompatibility antigens with outcomes following allogeneic hematopoietic cell transplantation. Am. J. Hematol. 98, 940–950 (2023).
pubmed: 37052167
pmcid: 10368187
doi: 10.1002/ajh.26925
Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).
pubmed: 35105974
pmcid: 7612664
doi: 10.1038/s41573-021-00387-y
Fotakis, G., Trajanoski, Z. & Rieder, D. Computational cancer neoantigen prediction: current status and recent advances. Immunooncol. Technol. 12, 100052 (2021).
pubmed: 35755950
pmcid: 9216660
doi: 10.1016/j.iotech.2021.100052
Peters, B., Nielsen, M. & Sette, A. T cell epitope predictions. Annu. Rev. Immunol. 38, 123–145 (2020).
pubmed: 32045313
pmcid: 10878398
doi: 10.1146/annurev-immunol-082119-124838
Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).
pubmed: 31844290
doi: 10.1038/s41587-019-0322-9
Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).
pubmed: 33479125
pmcid: 7611557
doi: 10.1126/science.aba6500
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
pubmed: 31292543
pmcid: 6687507
doi: 10.1038/s41586-019-1373-2
MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).
pubmed: 30348985
pmcid: 6197289
doi: 10.1038/s41467-018-06318-7
Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).
pubmed: 31209336
doi: 10.1038/s41591-019-0468-5
Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).
pubmed: 32042191
pmcid: 7021003
doi: 10.1038/s41591-019-0750-6
Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).
pubmed: 30814735
doi: 10.1038/s41586-019-0992-y
Wang, Y. et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J. Exp. Med. 217, e20191130 (2020).
pubmed: 31753849
doi: 10.1084/jem.20191130
Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184, 4090–4104 (2021).
pubmed: 34129837
pmcid: 8359928
doi: 10.1016/j.cell.2021.05.013
Bannier-Hélaouët, M. et al. Exploring the human lacrimal gland using organoids and single-cell sequencing. Cell Stem Cell 28, 1221–1232 (2021).
pubmed: 33730555
doi: 10.1016/j.stem.2021.02.024
Kanate, A. S. et al. Indications for hematopoietic cell transplantation and immune effector cell therapy: guidelines from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 26, 1247–1256 (2020).
pubmed: 32165328
doi: 10.1016/j.bbmt.2020.03.002
Van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281 (2019).
pubmed: 30827681
pmcid: 6515904
doi: 10.1016/j.cell.2019.01.031
Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).
pubmed: 30333627
pmcid: 6280667
doi: 10.1038/s41586-018-0623-z
Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283 (2020).
pubmed: 32916130
pmcid: 7575058
doi: 10.1016/j.cell.2020.08.036
Uhlen, M. et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366, eaax9198 (2019).
pubmed: 31857451
doi: 10.1126/science.aax9198
Cesana, M. et al. A CLK3-HMGA2 alternative splicing axis impacts human hematopoietic stem cell molecular identity throughout development. Cell Stem Cell 22, 575–588 (2018).
pubmed: 29625070
pmcid: 5957284
doi: 10.1016/j.stem.2018.03.012
Drissen, R., Thongjuea, S., Theilgaard-Monch, K. & Nerlov, C. Identification of two distinct pathways of human myelopoiesis. Sci. Immunol. 4, eaau7148 (2019).
pubmed: 31126997
doi: 10.1126/sciimmunol.aau7148
Kim, H. T. et al. Donor and recipient sex in allogeneic stem cell transplantation: what really matters. Haematologica 101, 1260–1266 (2016).
pubmed: 27354023
pmcid: 5046656
doi: 10.3324/haematol.2016.147645
Ofran, Y. et al. Diverse patterns of T-cell response against multiple newly identified human Y chromosome-encoded minor histocompatibility epitopes. Clin. Cancer Res. 16, 1642–1651 (2010).
pubmed: 20160060
pmcid: 2834217
doi: 10.1158/1078-0432.CCR-09-2701
Miklos, D. B. et al. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors. Blood 103, 353–359 (2004).
pubmed: 14512314
doi: 10.1182/blood-2003-03-0984
Feng, X., Hui, K. M., Younes, H. M. & Brickner, A. G. Targeting minor histocompatibility antigens in graft versus tumor or graft versus leukemia responses. Trends Immunol. 29, 624–632 (2008).
pubmed: 18952501
pmcid: 2593397
doi: 10.1016/j.it.2008.09.004
Bachireddy, P. et al. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 37, 109992 (2021).
pubmed: 34758319
pmcid: 9035342
doi: 10.1016/j.celrep.2021.109992
Bachireddy, P. et al. Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Sci. Transl. Med. 12, eabb7661 (2020).
pubmed: 32938797
pmcid: 7829680
doi: 10.1126/scitranslmed.abb7661
Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
pubmed: 11125122
pmcid: 29783
doi: 10.1093/nar/29.1.308
Torikai, H. et al. A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. J. Immunol. 173, 7046–7054 (2004).
pubmed: 15557202
doi: 10.4049/jimmunol.173.11.7046
Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40, 209–217 (2022).
pubmed: 34663921
doi: 10.1038/s41587-021-01021-3
Andreatta, M. et al. MS-Rescue: a computational pipeline to increase the quality and yield of immunopeptidomics experiments. Proteomics 19, e1800357 (2019).
pubmed: 30578603
doi: 10.1002/pmic.201800357
Lee, P. C. et al. Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma. J. Clin. Invest. 132, e151666 (2022).
pubmed: 35775490
pmcid: 9246387
doi: 10.1172/JCI151666
Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8
pubmed: 34290406
pmcid: 9187974
doi: 10.1038/s41586-021-03704-y
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
pubmed: 30357391
doi: 10.1093/nar/gky1006
Chowell, D. et al. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8
pubmed: 25831525
pmcid: 4394253
doi: 10.1073/pnas.1500973112
Schaefer, M. R. et al. A novel trafficking signal within the HLA-C cytoplasmic tail allows regulated expression upon differentiation of macrophages. J. Immunol. 180, 7804–7817 (2008).
pubmed: 18523244
doi: 10.4049/jimmunol.180.12.7804
Gabrielsen, I. S. M. et al. Transcriptomes of antigen presenting cells in human thymus. PLoS ONE 14, e0218858 (2019).
pubmed: 31261375
pmcid: 6602790
doi: 10.1371/journal.pone.0218858
Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).
pubmed: 32079746
pmcid: 7611066
doi: 10.1126/science.aay3224
Holtan, S. G. et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood 125, 1333–1338 (2015).
pubmed: 25593335
pmcid: 4335084
doi: 10.1182/blood-2014-10-609032
1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).
pubmed: 35999309
doi: 10.1038/s43018-022-00418-6
Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).
pubmed: 37165196
pmcid: 10171177
doi: 10.1038/s41586-023-06063-y
Lansford, J. L. et al. Computational modeling and confirmation of leukemia-associated minor histocompatibility antigens. Blood Adv. 2, 2052–2062 (2018).
pubmed: 30115642
pmcid: 6113610
doi: 10.1182/bloodadvances.2018022475
Olsen, K. S. et al. Shared graft-versus-leukemia minor histocompatibility antigens in DISCOVeRY-BMT. Blood Adv. 7, 1635–1649 (2023).
pubmed: 36477467
doi: 10.1182/bloodadvances.2022008863
Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).
pubmed: 31164343
pmcid: 7138461
doi: 10.1158/2159-8290.CD-18-1494
Wolff, D. et al. National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease: IV. The 2020 highly morbid forms report. Transplant. Cell Ther. 27, 817–835 (2021).
pubmed: 34217703
pmcid: 8478861
doi: 10.1016/j.jtct.2021.06.001
Lybaert, L. et al. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer 9, 503–519 (2023).
pubmed: 37055237
pmcid: 10414146
doi: 10.1016/j.trecan.2023.02.004
Bacigalupo, A. & Jones, R. PTCy: the ‘new’ standard for GVHD prophylaxis. Blood Rev. 62, 101096 (2023).
pubmed: 37301659
doi: 10.1016/j.blre.2023.101096
Murata, M., Warren, E. H. & Riddell, S. R. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J. Exp. Med. 197, 1279–1289 (2003).
pubmed: 12743171
pmcid: 2193779
doi: 10.1084/jem.20030044
Broen, K. et al. A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR. PLoS ONE 6, e21699 (2011).
pubmed: 21738768
pmcid: 3125305
doi: 10.1371/journal.pone.0021699
Griffioen, M. et al. Identification of 4 novel HLA-B*40:01 restricted minor histocompatibility antigens and their potential as targets for graft-versus-leukemia reactivity. Haematologica 97, 1196–1204 (2012).
pubmed: 22419570
pmcid: 3409817
doi: 10.3324/haematol.2011.049478
Spierings, E. et al. Identification of HLA class II-restricted H–Y-specific T-helper epitope evoking CD4
pubmed: 12944060
doi: 10.1016/S0140-6736(03)14191-8
Coghill, J. M. et al. Effector CD4
pubmed: 21245483
pmcid: 3069668
doi: 10.1182/blood-2010-12-290403
Jones, S. C., Murphy, G. F., Friedman, T. M. & Korngold, R. Importance of minor histocompatibility antigen expression by nonhematopoietic tissues in a CD4
pubmed: 14679183
pmcid: 296997
doi: 10.1172/JCI19427
Chaves, F. A., Lee, A. H., Nayak, J. L., Richards, K. A. & Sant, A. J. The utility and limitations of current web-available algorithms to predict peptides recognized by CD4 T cells in response to pathogen infection. J. Immunol. 188, 4235–4248 (2012).
pubmed: 22467652
doi: 10.4049/jimmunol.1103640
Dohner, H. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129, 424–447 (2017).
pubmed: 27895058
pmcid: 5291965
doi: 10.1182/blood-2016-08-733196
Greenberg, P. L. et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120, 2454–2465 (2012).
pubmed: 22740453
pmcid: 4425443
doi: 10.1182/blood-2012-03-420489
Przepiorka, D. et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant. 15, 825–828 (1995).
pubmed: 7581076
Glucksberg, H. et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 18, 295–304 (1974).
pubmed: 4153799
doi: 10.1097/00007890-197410000-00001
Pavletic, S. Z. et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on the epidemiology and natural history of relapse following allogeneic cell transplantation. Biol. Blood Marrow Transplant. 16, 871–890 (2010).
pubmed: 20399876
pmcid: 2916039
doi: 10.1016/j.bbmt.2010.04.004
Parry, E. M. et al. Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome. Nat. Med. 29, 158–169 (2023).
pubmed: 36624313
pmcid: 10155825
doi: 10.1038/s41591-022-02113-6
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892
pmcid: 5937676
doi: 10.1038/nmeth.4463
Kim, H. et al. Development of a validated interferon score using NanoString technology. J. Interferon Cytokine Res. 38, 171–185 (2018).
pubmed: 29638206
pmcid: 5963606
doi: 10.1089/jir.2017.0127
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
pubmed: 30247488
doi: 10.1038/nbt.4235
Quentmeier, H. et al. The LL-100 panel: 100 cell lines for blood cancer studies. Sci Rep. 9, 8218 (2019).
pubmed: 31160637
pmcid: 6547646
doi: 10.1038/s41598-019-44491-x
Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).
pubmed: 25143287
pmcid: 4441069
doi: 10.1093/bioinformatics/btu548
Klaeger, S. et al. Optimized liquid and gas phase fractionation increases HLA-peptidome coverage for primary cell and tissue samples. Mol. Cell. Proteomics 20, 100133 (2021).
pubmed: 34391888
pmcid: 8724927
doi: 10.1016/j.mcpro.2021.100133
Cui, K. H., Warnes, G. M., Jeffrey, R. & Matthews, C. D. Sex determination of preimplantation embryos by human testis-determining-gene amplification. Lancet 343, 79–82 (1994).
pubmed: 7903778
doi: 10.1016/S0140-6736(94)90815-X
Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7, 153 (2006).
pubmed: 16545123
pmcid: 1513259
doi: 10.1186/1471-2105-7-153
Samarajiwa, S. A., Forster, S., Auchettl, K. & Hertzog, P. J. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. 37, D852–D857 (2009).
pubmed: 18996892
doi: 10.1093/nar/gkn732
Hookeri, N. nidhih2/mhags: v1.0.0 (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11658572 (2024).
Hookeri, N. nidhih2/mhags-fm: v1.0.0 (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.11658599 (2024).