Innate immune signatures in the nasopharynx after SARS-CoV-2 infection and links with the clinical outcome of COVID-19 in Omicron-dominant period.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
22 Aug 2024
Historique:
received: 16 02 2024
accepted: 07 08 2024
revised: 04 07 2024
medline: 22 8 2024
pubmed: 22 8 2024
entrez: 22 8 2024
Statut: epublish

Résumé

While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.

Identifiants

pubmed: 39172244
doi: 10.1007/s00018-024-05401-1
pii: 10.1007/s00018-024-05401-1
doi:

Substances chimiques

Interferons 9008-11-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

364

Informations de copyright

© 2024. The Author(s).

Références

Lederer K, Castano D, Gomez Atria D et al (2020) SARS-CoV-2 mRNA vaccines Foster Potent Antigen-Specific Germinal Center responses Associated with neutralizing antibody generation. Immunity 53(6):1281–1295e1285. https://doi.org/10.1016/j.immuni.2020.11.009
doi: 10.1016/j.immuni.2020.11.009 pubmed: 33296685 pmcid: 7680029
Galani IE, Rovina N, Lampropoulou V et al (2021) Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol 22(1):32–40. https://doi.org/10.1038/s41590-020-00840-x
doi: 10.1038/s41590-020-00840-x pubmed: 33277638
Kusnadi A, Ramirez-Suastegui C, Fajardo V et al (2021) Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8(+) T cells. Sci Immunol 6(55). https://doi.org/10.1126/sciimmunol.abe4782
Gruell H, Vanshylla K, Weber T et al (2022) Antibody-mediated neutralization of SARS-CoV-2. Immunity 55(6):925–944. https://doi.org/10.1016/j.immuni.2022.05.005
doi: 10.1016/j.immuni.2022.05.005 pubmed: 35623355 pmcid: 9118976
Sonnleitner ST, Prelog M, Sonnleitner S et al (2022) Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 13(1):2560. https://doi.org/10.1038/s41467-022-30163-4
doi: 10.1038/s41467-022-30163-4 pubmed: 35538074 pmcid: 9090742
Blanco-Melo D, Nilsson-Payant BE, Liu WC et al (2020) Imbalanced host response to SARS-CoV-2 Drives Development of COVID-19. Cell 181(5):1036–1045e1039. https://doi.org/10.1016/j.cell.2020.04.026
doi: 10.1016/j.cell.2020.04.026 pubmed: 32416070 pmcid: 7227586
Boutin S, Hildebrand D, Boulant S et al (2021) Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 78(16):5953–5976. https://doi.org/10.1007/s00018-021-03889-5
doi: 10.1007/s00018-021-03889-5 pubmed: 34223911 pmcid: 8256233
Cheon H, Holvey-Bates EG, Schoggins JW et al (2013) IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32(20):2751–2763. https://doi.org/10.1038/emboj.2013.203
doi: 10.1038/emboj.2013.203 pubmed: 24065129 pmcid: 3801437
Hoagland DA, Moller R, Uhl SA et al (2021) Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 54(3):557–570e555. https://doi.org/10.1016/j.immuni.2021.01.017
doi: 10.1016/j.immuni.2021.01.017 pubmed: 33577760 pmcid: 7846242
Jeon YJ, Gil CH, Jo A et al (2020) The influence of interferon-lambda on restricting Middle East Respiratory Syndrome Coronavirus replication in the respiratory epithelium. Antiviral Res 180:104860. https://doi.org/10.1016/j.antiviral.2020.104860
doi: 10.1016/j.antiviral.2020.104860 pubmed: 32565134 pmcid: 7303047
Galani IE, Triantafyllia V, Eleminiadou EE et al (2017) Interferon-lambda mediates non-redundant front-line antiviral protection against Influenza Virus infection without compromising host fitness. Immunity 46(5):875–890e876. https://doi.org/10.1016/j.immuni.2017.04.025
doi: 10.1016/j.immuni.2017.04.025 pubmed: 28514692
Lukassen S, Chua RL, Trefzer T et al (2020) SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 39(10):e105114. https://doi.org/10.15252/embj.20105114
doi: 10.15252/embj.20105114 pubmed: 32246845 pmcid: 7232010
Ziegler CGK, Allon SJ, Nyquist SK et al (2020) SARS-CoV-2 receptor ACE2 is an Interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181(5):1016–1035e1019. https://doi.org/10.1016/j.cell.2020.04.035
doi: 10.1016/j.cell.2020.04.035 pubmed: 32413319 pmcid: 7252096
Ziegler CGK, Miao VN, Owings AH et al (2021) Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184(18):4713–4733e4722. https://doi.org/10.1016/j.cell.2021.07.023
doi: 10.1016/j.cell.2021.07.023 pubmed: 34352228 pmcid: 8299217
Gallo O, Locatello LG, Mazzoni A et al (2021) The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol 14(2):305–316. https://doi.org/10.1038/s41385-020-00359-2
doi: 10.1038/s41385-020-00359-2 pubmed: 33244161
Kim HJ, Jo A, Jeon YJ et al (2019) Nasal commensal Staphylococcus epidermidis enhances interferon-lambda-dependent immunity against influenza virus. Microbiome 7(1):80. https://doi.org/10.1186/s40168-019-0691-9
doi: 10.1186/s40168-019-0691-9 pubmed: 31146794 pmcid: 6542144
Lowery SA, Sariol A, Perlman S (2021) Innate immune and inflammatory responses to SARS-CoV-2: implications for COVID-19. Cell Host Microbe 29(7):1052–1062. https://doi.org/10.1016/j.chom.2021.05.004
doi: 10.1016/j.chom.2021.05.004 pubmed: 34022154 pmcid: 8126603
COVID-19 Treatment Guidelines Panel Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/ . Accessed [7/11/2023]
Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
doi: 10.1016/S0140-6736(20)30566-3 pubmed: 32171076 pmcid: 7270627
Bushnell B (2014) BBTools software package
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923
doi: 10.1038/nmeth.1923 pubmed: 22388286 pmcid: 3322381
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033
doi: 10.1093/bioinformatics/btq033 pubmed: 20110278 pmcid: 2832824
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106
doi: 10.1186/gb-2010-11-10-r106 pubmed: 20979621 pmcid: 3218662
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616 pubmed: 19910308
Newman AM, Steen CB, Liu CL et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773–782. https://doi.org/10.1038/s41587-019-0114-2
doi: 10.1038/s41587-019-0114-2 pubmed: 31061481 pmcid: 6610714
Ulgen E, Ozisik O, Sezerman OU (2019) pathfindR: an R Package for Comprehensive Identification of Enriched pathways in Omics Data through active subnetworks. Front Genet 10:858. https://doi.org/10.3389/fgene.2019.00858
doi: 10.3389/fgene.2019.00858 pubmed: 31608109 pmcid: 6773876
Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337
doi: 10.1038/nmeth.3337 pubmed: 25822800 pmcid: 4739640
Smith N, Goncalves P, Charbit B et al (2021) Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol 22(11):1428–1439. https://doi.org/10.1038/s41590-021-01028-7
doi: 10.1038/s41590-021-01028-7 pubmed: 34471264 pmcid: 8553615
Smith N, Posseme C, Bondet V et al (2022) Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity. Nat Commun 13(1):7254. https://doi.org/10.1038/s41467-022-34895-1
doi: 10.1038/s41467-022-34895-1 pubmed: 36434007 pmcid: 9700809
Hadjadj J, Yatim N, Barnabei L et al (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504):718–724. https://doi.org/10.1126/science.abc6027
doi: 10.1126/science.abc6027 pubmed: 32661059 pmcid: 7402632
Kim S, Kim MJ, Kim CH et al (2017) The superiority of IFN-lambda as a therapeutic candidate to Control Acute Influenza viral lung infection. Am J Respir Cell Mol Biol 56(2):202–212. https://doi.org/10.1165/rcmb.2016-0174OC
doi: 10.1165/rcmb.2016-0174OC pubmed: 27632156
An S, Jeon YJ, Jo A et al (2018) Initial Influenza Virus Replication can be limited in allergic asthma through Rapid induction of type III interferons in respiratory epithelium. Front Immunol 9:986. https://doi.org/10.3389/fimmu.2018.00986
doi: 10.3389/fimmu.2018.00986 pubmed: 29867963 pmcid: 5966536
Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14(5):315–328. https://doi.org/10.1038/nri3665
doi: 10.1038/nri3665 pubmed: 24762827 pmcid: 4104278
Pang IK, Iwasaki A (2011) Inflammasomes as mediators of immunity against influenza virus. Trends Immunol 32(1):34–41. https://doi.org/10.1016/j.it.2010.11.004
doi: 10.1016/j.it.2010.11.004 pubmed: 21147034
Shin H, Kim S, Jo A et al (2022) Intranasal inoculation of IFN-lambda resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Front Immunol 13:1009424. https://doi.org/10.3389/fimmu.2022.1009424
doi: 10.3389/fimmu.2022.1009424 pubmed: 36524125 pmcid: 9744928
Paludan SR, Mogensen TH (2022) Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol 7(67):eabm5505. https://doi.org/10.1126/sciimmunol.abm5505
doi: 10.1126/sciimmunol.abm5505 pubmed: 34995097
Stanifer ML, Kee C, Cortese M et al (2020) Critical role of type III Interferon in Controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep 32(1):107863. https://doi.org/10.1016/j.celrep.2020.107863
doi: 10.1016/j.celrep.2020.107863 pubmed: 32610043 pmcid: 7303637
Stephenson E, Reynolds G, Botting RA et al (2021) Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med 27(5):904–916. https://doi.org/10.1038/s41591-021-01329-2
doi: 10.1038/s41591-021-01329-2 pubmed: 33879890 pmcid: 8121667
Wendisch D, Dietrich O, Mari T et al (2021) SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184(26):6243–6261e6227. https://doi.org/10.1016/j.cell.2021.11.033
doi: 10.1016/j.cell.2021.11.033 pubmed: 34914922 pmcid: 8626230
Feng Z, Yu Q, Yao S et al (2020) Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics. Nat Commun 11(1):4968. https://doi.org/10.1038/s41467-020-18786-x
doi: 10.1038/s41467-020-18786-x pubmed: 33009413 pmcid: 7532528
Chevrier S, Zurbuchen Y, Cervia C et al (2021) A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med 2(1):100166. https://doi.org/10.1016/j.xcrm.2020.100166
doi: 10.1016/j.xcrm.2020.100166 pubmed: 33521697
Vono M, Huttner A, Lemeille S et al (2021) Robust innate responses to SARS-CoV-2 in children resolve faster than in adults without compromising adaptive immunity. Cell Rep 37(1):109773. https://doi.org/10.1016/j.celrep.2021.109773
doi: 10.1016/j.celrep.2021.109773 pubmed: 34587479 pmcid: 8440231
Bastard P, Gervais A, Le Voyer T et al (2024) Human autoantibodies neutralizing type I IFNs: from 1981 to 2023. Immunol Rev 322(1):98–112. https://doi.org/10.1111/imr.13304
doi: 10.1111/imr.13304 pubmed: 38193358
Philippot Q, Fekkar A, Gervais A et al (2023) Autoantibodies neutralizing type I IFNs in the Bronchoalveolar Lavage of at least 10% of patients during life-threatening COVID-19 pneumonia. J Clin Immunol 43(6):1093–1103. https://doi.org/10.1007/s10875-023-01512-9
doi: 10.1007/s10875-023-01512-9 pubmed: 37209324 pmcid: 10199445

Auteurs

Hyunkyung Cha (H)

Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea.

Chan Mi Lee (CM)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Sujin Kim (S)

Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Chang Kyung Kang (CK)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Pyoeng Gyun Choe (PG)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Yoon Kyung Jeon (YK)

Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.

Hyeon Jae Jo (HJ)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Nam Joong Kim (NJ)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.

Wan Beom Park (WB)

Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. wbpark1@snu.ac.kr.

Hyun Jik Kim (HJ)

Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea. hyunjerry@snu.ac.kr.
Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea. hyunjerry@snu.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH