Innate immune signatures in the nasopharynx after SARS-CoV-2 infection and links with the clinical outcome of COVID-19 in Omicron-dominant period.
COVID-19
Interferon
Interferon-stimulated genes
Nasopharynx
Omicron variant
SARS-CoV-2
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
16
02
2024
accepted:
07
08
2024
revised:
04
07
2024
medline:
22
8
2024
pubmed:
22
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.
Identifiants
pubmed: 39172244
doi: 10.1007/s00018-024-05401-1
pii: 10.1007/s00018-024-05401-1
doi:
Substances chimiques
Interferons
9008-11-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
364Informations de copyright
© 2024. The Author(s).
Références
Lederer K, Castano D, Gomez Atria D et al (2020) SARS-CoV-2 mRNA vaccines Foster Potent Antigen-Specific Germinal Center responses Associated with neutralizing antibody generation. Immunity 53(6):1281–1295e1285. https://doi.org/10.1016/j.immuni.2020.11.009
doi: 10.1016/j.immuni.2020.11.009
pubmed: 33296685
pmcid: 7680029
Galani IE, Rovina N, Lampropoulou V et al (2021) Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol 22(1):32–40. https://doi.org/10.1038/s41590-020-00840-x
doi: 10.1038/s41590-020-00840-x
pubmed: 33277638
Kusnadi A, Ramirez-Suastegui C, Fajardo V et al (2021) Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8(+) T cells. Sci Immunol 6(55). https://doi.org/10.1126/sciimmunol.abe4782
Gruell H, Vanshylla K, Weber T et al (2022) Antibody-mediated neutralization of SARS-CoV-2. Immunity 55(6):925–944. https://doi.org/10.1016/j.immuni.2022.05.005
doi: 10.1016/j.immuni.2022.05.005
pubmed: 35623355
pmcid: 9118976
Sonnleitner ST, Prelog M, Sonnleitner S et al (2022) Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 13(1):2560. https://doi.org/10.1038/s41467-022-30163-4
doi: 10.1038/s41467-022-30163-4
pubmed: 35538074
pmcid: 9090742
Blanco-Melo D, Nilsson-Payant BE, Liu WC et al (2020) Imbalanced host response to SARS-CoV-2 Drives Development of COVID-19. Cell 181(5):1036–1045e1039. https://doi.org/10.1016/j.cell.2020.04.026
doi: 10.1016/j.cell.2020.04.026
pubmed: 32416070
pmcid: 7227586
Boutin S, Hildebrand D, Boulant S et al (2021) Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 78(16):5953–5976. https://doi.org/10.1007/s00018-021-03889-5
doi: 10.1007/s00018-021-03889-5
pubmed: 34223911
pmcid: 8256233
Cheon H, Holvey-Bates EG, Schoggins JW et al (2013) IFNbeta-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32(20):2751–2763. https://doi.org/10.1038/emboj.2013.203
doi: 10.1038/emboj.2013.203
pubmed: 24065129
pmcid: 3801437
Hoagland DA, Moller R, Uhl SA et al (2021) Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 54(3):557–570e555. https://doi.org/10.1016/j.immuni.2021.01.017
doi: 10.1016/j.immuni.2021.01.017
pubmed: 33577760
pmcid: 7846242
Jeon YJ, Gil CH, Jo A et al (2020) The influence of interferon-lambda on restricting Middle East Respiratory Syndrome Coronavirus replication in the respiratory epithelium. Antiviral Res 180:104860. https://doi.org/10.1016/j.antiviral.2020.104860
doi: 10.1016/j.antiviral.2020.104860
pubmed: 32565134
pmcid: 7303047
Galani IE, Triantafyllia V, Eleminiadou EE et al (2017) Interferon-lambda mediates non-redundant front-line antiviral protection against Influenza Virus infection without compromising host fitness. Immunity 46(5):875–890e876. https://doi.org/10.1016/j.immuni.2017.04.025
doi: 10.1016/j.immuni.2017.04.025
pubmed: 28514692
Lukassen S, Chua RL, Trefzer T et al (2020) SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 39(10):e105114. https://doi.org/10.15252/embj.20105114
doi: 10.15252/embj.20105114
pubmed: 32246845
pmcid: 7232010
Ziegler CGK, Allon SJ, Nyquist SK et al (2020) SARS-CoV-2 receptor ACE2 is an Interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181(5):1016–1035e1019. https://doi.org/10.1016/j.cell.2020.04.035
doi: 10.1016/j.cell.2020.04.035
pubmed: 32413319
pmcid: 7252096
Ziegler CGK, Miao VN, Owings AH et al (2021) Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184(18):4713–4733e4722. https://doi.org/10.1016/j.cell.2021.07.023
doi: 10.1016/j.cell.2021.07.023
pubmed: 34352228
pmcid: 8299217
Gallo O, Locatello LG, Mazzoni A et al (2021) The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol 14(2):305–316. https://doi.org/10.1038/s41385-020-00359-2
doi: 10.1038/s41385-020-00359-2
pubmed: 33244161
Kim HJ, Jo A, Jeon YJ et al (2019) Nasal commensal Staphylococcus epidermidis enhances interferon-lambda-dependent immunity against influenza virus. Microbiome 7(1):80. https://doi.org/10.1186/s40168-019-0691-9
doi: 10.1186/s40168-019-0691-9
pubmed: 31146794
pmcid: 6542144
Lowery SA, Sariol A, Perlman S (2021) Innate immune and inflammatory responses to SARS-CoV-2: implications for COVID-19. Cell Host Microbe 29(7):1052–1062. https://doi.org/10.1016/j.chom.2021.05.004
doi: 10.1016/j.chom.2021.05.004
pubmed: 34022154
pmcid: 8126603
COVID-19 Treatment Guidelines Panel Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. https://www.covid19treatmentguidelines.nih.gov/ . Accessed [7/11/2023]
Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
doi: 10.1016/S0140-6736(20)30566-3
pubmed: 32171076
pmcid: 7270627
Bushnell B (2014) BBTools software package
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923
doi: 10.1038/nmeth.1923
pubmed: 22388286
pmcid: 3322381
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033
doi: 10.1093/bioinformatics/btq033
pubmed: 20110278
pmcid: 2832824
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106
doi: 10.1186/gb-2010-11-10-r106
pubmed: 20979621
pmcid: 3218662
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616
pubmed: 19910308
Newman AM, Steen CB, Liu CL et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773–782. https://doi.org/10.1038/s41587-019-0114-2
doi: 10.1038/s41587-019-0114-2
pubmed: 31061481
pmcid: 6610714
Ulgen E, Ozisik O, Sezerman OU (2019) pathfindR: an R Package for Comprehensive Identification of Enriched pathways in Omics Data through active subnetworks. Front Genet 10:858. https://doi.org/10.3389/fgene.2019.00858
doi: 10.3389/fgene.2019.00858
pubmed: 31608109
pmcid: 6773876
Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337
doi: 10.1038/nmeth.3337
pubmed: 25822800
pmcid: 4739640
Smith N, Goncalves P, Charbit B et al (2021) Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat Immunol 22(11):1428–1439. https://doi.org/10.1038/s41590-021-01028-7
doi: 10.1038/s41590-021-01028-7
pubmed: 34471264
pmcid: 8553615
Smith N, Posseme C, Bondet V et al (2022) Defective activation and regulation of type I interferon immunity is associated with increasing COVID-19 severity. Nat Commun 13(1):7254. https://doi.org/10.1038/s41467-022-34895-1
doi: 10.1038/s41467-022-34895-1
pubmed: 36434007
pmcid: 9700809
Hadjadj J, Yatim N, Barnabei L et al (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504):718–724. https://doi.org/10.1126/science.abc6027
doi: 10.1126/science.abc6027
pubmed: 32661059
pmcid: 7402632
Kim S, Kim MJ, Kim CH et al (2017) The superiority of IFN-lambda as a therapeutic candidate to Control Acute Influenza viral lung infection. Am J Respir Cell Mol Biol 56(2):202–212. https://doi.org/10.1165/rcmb.2016-0174OC
doi: 10.1165/rcmb.2016-0174OC
pubmed: 27632156
An S, Jeon YJ, Jo A et al (2018) Initial Influenza Virus Replication can be limited in allergic asthma through Rapid induction of type III interferons in respiratory epithelium. Front Immunol 9:986. https://doi.org/10.3389/fimmu.2018.00986
doi: 10.3389/fimmu.2018.00986
pubmed: 29867963
pmcid: 5966536
Iwasaki A, Pillai PS (2014) Innate immunity to influenza virus infection. Nat Rev Immunol 14(5):315–328. https://doi.org/10.1038/nri3665
doi: 10.1038/nri3665
pubmed: 24762827
pmcid: 4104278
Pang IK, Iwasaki A (2011) Inflammasomes as mediators of immunity against influenza virus. Trends Immunol 32(1):34–41. https://doi.org/10.1016/j.it.2010.11.004
doi: 10.1016/j.it.2010.11.004
pubmed: 21147034
Shin H, Kim S, Jo A et al (2022) Intranasal inoculation of IFN-lambda resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Front Immunol 13:1009424. https://doi.org/10.3389/fimmu.2022.1009424
doi: 10.3389/fimmu.2022.1009424
pubmed: 36524125
pmcid: 9744928
Paludan SR, Mogensen TH (2022) Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol 7(67):eabm5505. https://doi.org/10.1126/sciimmunol.abm5505
doi: 10.1126/sciimmunol.abm5505
pubmed: 34995097
Stanifer ML, Kee C, Cortese M et al (2020) Critical role of type III Interferon in Controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep 32(1):107863. https://doi.org/10.1016/j.celrep.2020.107863
doi: 10.1016/j.celrep.2020.107863
pubmed: 32610043
pmcid: 7303637
Stephenson E, Reynolds G, Botting RA et al (2021) Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med 27(5):904–916. https://doi.org/10.1038/s41591-021-01329-2
doi: 10.1038/s41591-021-01329-2
pubmed: 33879890
pmcid: 8121667
Wendisch D, Dietrich O, Mari T et al (2021) SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184(26):6243–6261e6227. https://doi.org/10.1016/j.cell.2021.11.033
doi: 10.1016/j.cell.2021.11.033
pubmed: 34914922
pmcid: 8626230
Feng Z, Yu Q, Yao S et al (2020) Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics. Nat Commun 11(1):4968. https://doi.org/10.1038/s41467-020-18786-x
doi: 10.1038/s41467-020-18786-x
pubmed: 33009413
pmcid: 7532528
Chevrier S, Zurbuchen Y, Cervia C et al (2021) A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med 2(1):100166. https://doi.org/10.1016/j.xcrm.2020.100166
doi: 10.1016/j.xcrm.2020.100166
pubmed: 33521697
Vono M, Huttner A, Lemeille S et al (2021) Robust innate responses to SARS-CoV-2 in children resolve faster than in adults without compromising adaptive immunity. Cell Rep 37(1):109773. https://doi.org/10.1016/j.celrep.2021.109773
doi: 10.1016/j.celrep.2021.109773
pubmed: 34587479
pmcid: 8440231
Bastard P, Gervais A, Le Voyer T et al (2024) Human autoantibodies neutralizing type I IFNs: from 1981 to 2023. Immunol Rev 322(1):98–112. https://doi.org/10.1111/imr.13304
doi: 10.1111/imr.13304
pubmed: 38193358
Philippot Q, Fekkar A, Gervais A et al (2023) Autoantibodies neutralizing type I IFNs in the Bronchoalveolar Lavage of at least 10% of patients during life-threatening COVID-19 pneumonia. J Clin Immunol 43(6):1093–1103. https://doi.org/10.1007/s10875-023-01512-9
doi: 10.1007/s10875-023-01512-9
pubmed: 37209324
pmcid: 10199445