Pediatric-onset Multiple Sclerosis treatment: a multicentre observational study comparing natalizumab with fingolimod.
Multiple Sclerosis
disease modifying treatment
fingolimod
natalizumab
pediatric multiple sclerosis
real-world
study
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
07
06
2024
accepted:
21
07
2024
revised:
17
07
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
23
8
2024
Statut:
aheadofprint
Résumé
Pediatric-onset Multiple Sclerosis (POMS) patients show more inflammatory disease compared with adult-onset MS. However, highly effective treatments are limited with only fingolimod being approved in Italy and natalizumab prescribed as off-label treatment. to compare the efficacy of natalizumab versus fingolimod in POMS. This is an observational longitudinal multicentre study including natalizumab- and fingolimod-treated POMS patients (N-POMS and F-POMS, respectively). We collected Annual Relapse Rate (ARR), Expanded Disability Status Scale (EDSS), Symbol Digit Modality Test (SDMT), and MRI activity at baseline (T0), 12-18 months (T1), and last available observation (T2). We enrolled 57 N-POMS and 27 F-POMS patients from six Italian MS Centres. At T0, N-POMS patients showed higher ARR (p = 0.03), higher EDSS (p = 0.003) and lower SDMT (p = 0.04) at baseline compared with F-POMS. Between T Both natalizumab and fingolimod showed high and sustained efficacy in controlling relapses and natalizumab also associated to a disability decrease in POMS. This latter effect might be partly mediated by the high inflammatory activity at baseline in N-POMS.
Sections du résumé
BACKGROUND
BACKGROUND
Pediatric-onset Multiple Sclerosis (POMS) patients show more inflammatory disease compared with adult-onset MS. However, highly effective treatments are limited with only fingolimod being approved in Italy and natalizumab prescribed as off-label treatment.
OBJECTIVES
OBJECTIVE
to compare the efficacy of natalizumab versus fingolimod in POMS.
METHODS
METHODS
This is an observational longitudinal multicentre study including natalizumab- and fingolimod-treated POMS patients (N-POMS and F-POMS, respectively). We collected Annual Relapse Rate (ARR), Expanded Disability Status Scale (EDSS), Symbol Digit Modality Test (SDMT), and MRI activity at baseline (T0), 12-18 months (T1), and last available observation (T2).
RESULTS
RESULTS
We enrolled 57 N-POMS and 27 F-POMS patients from six Italian MS Centres. At T0, N-POMS patients showed higher ARR (p = 0.03), higher EDSS (p = 0.003) and lower SDMT (p = 0.04) at baseline compared with F-POMS. Between T
CONCLUSION
CONCLUSIONS
Both natalizumab and fingolimod showed high and sustained efficacy in controlling relapses and natalizumab also associated to a disability decrease in POMS. This latter effect might be partly mediated by the high inflammatory activity at baseline in N-POMS.
Identifiants
pubmed: 39177751
doi: 10.1007/s00415-024-12610-y
pii: 10.1007/s00415-024-12610-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Jeong A, Oleske DM, Holman J (2019) Epidemiology of pediatric-onset multiple sclerosis: a systematic review of the literature. J Child Neurol 34:705–712. https://doi.org/10.1177/0883073819845827
doi: 10.1177/0883073819845827
pubmed: 31185780
Renoux C, Vukusic S, Mikaeloff Y et al (2007) Natural history of multiple sclerosis with childhood onset. N Engl J Med 356:2603–2613. https://doi.org/10.1056/NEJMoa067597
doi: 10.1056/NEJMoa067597
pubmed: 17582070
Yeh EA, Weinstock-Guttman B, Ramanathan M et al (2009) Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain 132:3392–3400. https://doi.org/10.1093/brain/awp278
doi: 10.1093/brain/awp278
pubmed: 19892770
Fadda G, Brown RA, Longoni G et al (2018) MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. Lancet Child Adolesc Health 2:191–204. https://doi.org/10.1016/S2352-4642(18)30026-9
doi: 10.1016/S2352-4642(18)30026-9
pubmed: 30169254
Jakimovski D, Awan S, Eckert SP et al (2022) Multiple sclerosis in children: differential diagnosis, prognosis, and disease-modifying treatment. CNS Drugs 36:45–59. https://doi.org/10.1007/s40263-021-00887-w
doi: 10.1007/s40263-021-00887-w
pubmed: 34940954
Ghezzi A, Deplano V, Faroni J et al (1997) Multiple sclerosis in childhood: clinical features of 149 cases. Mult Scler 3:43–46. https://doi.org/10.1177/135245859700300105
doi: 10.1177/135245859700300105
pubmed: 9160345
Iaffaldano P, Portaccio E, Lucisano G et al (2024) Multiple sclerosis progression and relapse activity in children. JAMA Neurol 81:50–58. https://doi.org/10.1001/jamaneurol.2023.4455
doi: 10.1001/jamaneurol.2023.4455
pubmed: 38010712
Baroncini D, Simone M, Iaffaldano P et al (2021) Risk of persistent disability in patients with pediatric-onset multiple sclerosis. JAMA Neurol 78:726–735. https://doi.org/10.1001/jamaneurol.2021.1008
doi: 10.1001/jamaneurol.2021.1008
pubmed: 33938921
Ghezzi A, Amato MP, Edan G et al (2021) The introduction of new medications in pediatric multiple sclerosis: open issues and challenges. Mult Scler 27:479–482. https://doi.org/10.1177/1352458520930620
doi: 10.1177/1352458520930620
pubmed: 32539596
Chitnis T, Arnold DL, Banwell B et al (2018) Trial of fingolimod versus interferon beta-1a in PEDIATRIC MULTIPLE SCLEROSIS. N Engl J Med 379:1017–1027. https://doi.org/10.1056/NEJMoa1800149
doi: 10.1056/NEJMoa1800149
pubmed: 30207920
Saponaro AC, Tully T, Maillart E et al (2023) Treatments of paediatric multiple sclerosis: efficacy and tolerance in a longitudinal follow-up study. Eur J Paediatr Neurol 45:22–28. https://doi.org/10.1016/j.ejpn.2023.05.001
doi: 10.1016/j.ejpn.2023.05.001
pubmed: 37245449
Baroncini D, Ghezzi A, Guaschino C et al (2022) Long-term follow-up (up to 11 years) of an Italian pediatric MS cohort treated with Natalizumab: a multicenter, observational study. Neurol Sci 43:6415–6423. https://doi.org/10.1007/s10072-022-06211-8
doi: 10.1007/s10072-022-06211-8
pubmed: 35781765
Ghezzi A, Pozzilli C, Grimaldi LM et al (2010) Safety and efficacy of natalizumab in children with multiple sclerosis. Neurology 75:912–917. https://doi.org/10.1212/WNL.0b013e3181f11daf
doi: 10.1212/WNL.0b013e3181f11daf
pubmed: 20820002
Determina (2020) n. 142638/2020. GU Serie Generale n.322
Langer-Gould A, Atlas SW, Green AJ et al (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353:375–381. https://doi.org/10.1056/NEJMoa051847
doi: 10.1056/NEJMoa051847
pubmed: 15947078
Lanzillo R, Carotenuto A, Moccia M et al (2017) A longitudinal real-life comparison study of natalizumab and fingolimod. Acta Neurol Scand 136:217–222. https://doi.org/10.1111/ane.12718
doi: 10.1111/ane.12718
pubmed: 27976804
Koch-Henriksen N, Magyari M, Sellebjerg F et al (2017) A comparison of multiple sclerosis clinical disease activity between patients treated with natalizumab and fingolimod. Mult Scler 23:234–241. https://doi.org/10.1177/1352458516643393
doi: 10.1177/1352458516643393
pubmed: 27055806
Boziki M, Bakirtzis C, Giantzi V et al (2021) Long-Term Efficacy Outcomes of Natalizumab vs. Fingolimod in Patients With Highly Active Relapsing-Remitting Multiple Sclerosis: Real-World Data From a Multiple Sclerosis Reference Center. Front Neurol 12:699844. https://doi.org/10.3389/fneur.2021.699844
doi: 10.3389/fneur.2021.699844
pubmed: 34497577
pmcid: 8419322
Cohen M, Mondot L, Bucciarelli F et al (2021) BEST-MS: a prospective head-to-head comparative study of natalizumab and fingolimod in active relapsing MS. Mult Scler 27:1556–1563. https://doi.org/10.1177/1352458520969145
doi: 10.1177/1352458520969145
pubmed: 33124504
Prosperini L, Sacca F, Cordioli C et al (2017) Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naive patients with multiple sclerosis. J Neurol 264:284–294. https://doi.org/10.1007/s00415-016-8343-5
doi: 10.1007/s00415-016-8343-5
pubmed: 27878443
Andersen JB, Sharmin S, Lefort M et al (2021) The effectiveness of natalizumab vs fingolimod-A comparison of international registry studies. Mult Scler Relat Disord 53:103012. https://doi.org/10.1016/j.msard.2021.103012
doi: 10.1016/j.msard.2021.103012
pubmed: 34116480
Krupp LB, Tardieu M, Amato MP et al (2013) International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 19:1261–1267. https://doi.org/10.1177/1352458513484547
doi: 10.1177/1352458513484547
pubmed: 23572237
Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452. https://doi.org/10.1212/wnl.33.11.1444
doi: 10.1212/wnl.33.11.1444
pubmed: 6685237
Santoro JD, Waltz M, Aaen G et al (2020) Pediatric Multiple Sclerosis Severity Score in a large US cohort. Neurology 95:e1844–e1853. https://doi.org/10.1212/WNL.0000000000010414
doi: 10.1212/WNL.0000000000010414
pubmed: 32690790
pmcid: 7682820
Scaravilli A, Tranfa M, Pontillo G et al (2024) Radiological Reporting Systems in Multiple Sclerosis. Appl Sci 14:5626
doi: 10.3390/app14135626
Benedict RH, DeLuca J, Phillips G et al (2017) Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler 23:721–733. https://doi.org/10.1177/1352458517690821
doi: 10.1177/1352458517690821
pubmed: 28206827
pmcid: 5405816
Spelman T, Simoneau G, Hyde R et al (2024) Comparative effectiveness of natalizumab, fingolimod, and injectable therapies in pediatric-onset multiple sclerosis: a registry-based study. Neurology 102:e208114. https://doi.org/10.1212/WNL.0000000000208114
doi: 10.1212/WNL.0000000000208114
pubmed: 38447093
pmcid: 11033984
Foley J, Berkovich R, Gudesblatt M et al (2023) Characterizing the “feel-good experience” in multiple sclerosis patients treated with natalizumab or other therapies. Neurodegener Dis Manag 13:23–34. https://doi.org/10.2217/nmt-2022-0003
doi: 10.2217/nmt-2022-0003
pubmed: 36285716
Svenningsson A, Falk E, Celius EG et al (2013) Natalizumab treatment reduces fatigue in multiple sclerosis. Results from the TYNERGY trial; a study in the real life setting. PLoS ONE 8:e58643. https://doi.org/10.1371/journal.pone.0058643
doi: 10.1371/journal.pone.0058643
pubmed: 23555589
pmcid: 3605436
Belachew S, Phan-Ba R, Bartholome E et al (2011) Natalizumab induces a rapid improvement of disability status and ambulation after failure of previous therapy in relapsing-remitting multiple sclerosis. Eur J Neurol 18:240–245. https://doi.org/10.1111/j.1468-1331.2010.03112.x
doi: 10.1111/j.1468-1331.2010.03112.x
pubmed: 20561044
Jafarpour S, Pinto S, Vu MH et al (2024) Delayed initiation of disease modifying therapy increases relapse frequency and motor disability in pediatric onset multiple sclerosis. Mult Scler Relat Disord 87:105669. https://doi.org/10.1016/j.msard.2024.105669
doi: 10.1016/j.msard.2024.105669
pubmed: 38749351
Abdel-Mannan OA, Manchoon C, Rossor T et al (2021) Use of disease-modifying therapies in pediatric relapsing-remitting multiple sclerosis in the United Kingdom. Neurol Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001008
doi: 10.1212/NXI.0000000000001008
pubmed: 34021056
pmcid: 8143699
Krysko KM, Graves JS, Rensel M et al (2020) Real-world effectiveness of initial disease-modifying therapies in pediatric multiple sclerosis. Ann Neurol 88:42–55. https://doi.org/10.1002/ana.25737
doi: 10.1002/ana.25737
pubmed: 32267005
Trojano M, Pellegrini F, Paolicelli D et al (2009) Observational studies: propensity score analysis of non-randomized data. Int MS J 16:90–97
pubmed: 19878631
Kalincik T, Horakova D, Spelman T et al (2015) Switch to natalizumab versus fingolimod in active relapsing-remitting multiple sclerosis. Ann Neurol 77:425–435. https://doi.org/10.1002/ana.24339
doi: 10.1002/ana.24339
pubmed: 25546031
Cohen JA, Khatri B, Barkhof F et al (2016) Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry 87:468–475. https://doi.org/10.1136/jnnp-2015-310597
doi: 10.1136/jnnp-2015-310597
pubmed: 26111826
Arnold DL, Banwell B, Bar-Or A et al (2020) Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIGMS study. J Neurol Neurosurg Psychiatry 91:483–492. https://doi.org/10.1136/jnnp-2019-322138
doi: 10.1136/jnnp-2019-322138
pubmed: 32132224
Borriello G, Pozzilli C (2021) Long-term fingolimod treatment in two pediatric patients with multiple sclerosis. Neurol Sci 42:29–36. https://doi.org/10.1007/s10072-021-05116-2
doi: 10.1007/s10072-021-05116-2
pubmed: 33751260
Krupp L, Banwell B, Chitnis T et al (2022) Effect of fingolimod on health-related quality of life in paediatric patients with multiple sclerosis: results from the phase 3 PARADIGMS Study. BMJ Neurol Open 4:e000215. https://doi.org/10.1136/bmjno-2021-000215
doi: 10.1136/bmjno-2021-000215
pubmed: 35308898
pmcid: 8883212
Deiva K, Huppke P, Banwell B et al (2020) Consistent control of disease activity with fingolimod versus IFN beta-1a in paediatric-onset multiple sclerosis: further insights from PARADIGMS. J Neurol Neurosurg Psychiatry 91:58–66. https://doi.org/10.1136/jnnp-2019-321124
doi: 10.1136/jnnp-2019-321124
pubmed: 31467033