Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems.
Journal
BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy
ISSN: 1179-190X
Titre abrégé: BioDrugs
Pays: New Zealand
ID NLM: 9705305
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
accepted:
25
07
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
23
8
2024
Statut:
aheadofprint
Résumé
Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Sections du résumé
BACKGROUND
BACKGROUND
Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs).
OBJECTIVE
OBJECTIVE
To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them.
METHODS
METHODS
A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools.
RESULTS
RESULTS
Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models.
CONCLUSIONS
CONCLUSIONS
Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Identifiants
pubmed: 39177875
doi: 10.1007/s40259-024-00674-1
pii: 10.1007/s40259-024-00674-1
doi:
Types de publication
Journal Article
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : RTI2018-098672-B-I00
Organisme : Eusko Jaurlaritza
ID : IT1587-22
Organisme : Eusko Jaurlaritza
ID : GIC21/34
Organisme : Eusko Jaurlaritza
ID : PRE_2020_2_01164
Organisme : Euskal Herriko Unibertsitatea
ID : PIF21/61
Informations de copyright
© 2024. The Author(s).
Références
Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med. 2015;66:471–86.
pubmed: 25587658
doi: 10.1146/annurev-med-122313-085916
Platt FM, d'Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4:27
Filocamo M, Morrone A. Lysosomal storage disorders: molecular basis and laboratory testing. Hum Genomics. 2011;5:156–69.
pubmed: 21504867
pmcid: 3500170
doi: 10.1186/1479-7364-5-3-156
Arenz C. Recent advances and novel treatments for sphingolipidoses. Future Med Chem. 2017;9:1685–98.
doi: 10.4155/fmc-2017-0065
Fecarotta S, Tarallo A, Damiano C, Minopoli N, Parenti G. Pathogenesis of mucopolysaccharidoses, an update. Int J Mol Sci. 2020;21:1–14.
doi: 10.3390/ijms21072515
Khan SA, Tomatsu SC. Mucolipidoses overview: past, present, and future. Int J Mol Sci. 2020;21:1–20.
doi: 10.3390/ijms21186812
Ellingwood SS, Cheng A. Biochemical and clinical aspects of glycogen storage diseases. J Endocrinol. 2018;238:R131–41.
pubmed: 29875163
pmcid: 6050127
doi: 10.1530/JOE-18-0120
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med. 2021;13:1–21.
doi: 10.15252/emmm.202012836
Kingma SDK, Bodamer OA, Wijburg FA. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract Res Clin Endocrinol Metab. 2015;29:145–57.
pubmed: 25987169
doi: 10.1016/j.beem.2014.08.004
Koto Y, Sakai N, Lee Y, Kakee N, Matsuda J, Tsuboi K, et al. Prevalence of patients with lysosomal storage disorders and peroxisomal disorders: a nationwide survey in Japan. Mol Genet Metab. 2021;133:277–88.
pubmed: 34090759
doi: 10.1016/j.ymgme.2021.05.004
The portal for rare diseases and orphan drugs. Orpha.net https://www.orpha.net/consor/cgi-bin/Disease.php?lng=EN . Accessed 16 Apr 2024.
Oder D, Nordbeck P, Wanner C. Long term treatment with enzyme replacement therapy in patients with Fabry disease. Nephron. 2016;134:30–6.
pubmed: 27576727
doi: 10.1159/000448968
Dinur T, Grittner U, Revel-Vilk S, Becker-Cohen M, Istaiti M, Cozma C, et al. Impact of long-term enzyme replacement therapy on glucosylsphingosine (Lyso-gb1) values in patients with type 1 Gaucher disease: statistical models for comparing three enzymatic formulations. Int J Mol Sci. 2021;22:1–11.
doi: 10.3390/ijms22147699
Fernández-Pereira C, Millán-Tejado BS, Gallardo-Gómez M, Pérez-Márquez T, Alves-Villar M, Melcón-Crespo C, et al. Therapeutic approaches in lysosomal storage diseases. Biomolecules. 2021;11:1–19.
doi: 10.3390/biom11121775
Sly WS, Vogler C, Grubb JH, Levy B, Galvin N, Tan Y, et al. Enzyme therapy in mannose receptor-null mucopolysaccharidosis VII mice defines roles for the mannose 6-phosphate and mannose receptors. Proc Natl Acad Sci USA. 2006;103:15172–7.
pubmed: 17015822
pmcid: 1622795
doi: 10.1073/pnas.0607053103
Chen JC, Luu AR, Wise N, de Angelis R, Agrawal V, Mangini L, et al. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. J Biol Chem. 2020;295:13532–55.
pubmed: 31481471
doi: 10.1074/jbc.RA119.009811
Rombach SM, Aerts JMFG, Poorthuis BJHM, Groener JEM, Donker-Koopman W, Hendriks E, et al. Long-term effect of antibodies against infused alpha-galactosidase A in Fabry disease on plasma and urinary (lyso)Gb3 reduction and treatment outcome. PLoS ONE. 2012;7:1–7.
doi: 10.1371/journal.pone.0047805
Solomon M, Muro S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev. 2017;118:109–34.
pubmed: 28502768
pmcid: 5828774
doi: 10.1016/j.addr.2017.05.004
Ortolano S. Small molecules: substrate inhibitors, chaperones, stop-codon read through, and beyond. J Inborn Errors Metab Screen. 2016;4:1–11.
doi: 10.1177/2326409816666297
Jung O, Patnaik S, Marugan J, Sidransky E, Westbroek W. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its potential implications for Parkinson disease. Expert Rev Proteomics. 2017;13:471–9.
doi: 10.1080/14789450.2016.1174583
Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54:288–96.
pubmed: 27834756
doi: 10.1136/jmedgenet-2016-104178
Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 2015;23:1138–48.
pubmed: 25881001
pmcid: 4817787
doi: 10.1038/mt.2015.62
Radin NS. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J. 1996;13:153–7.
pubmed: 8737239
doi: 10.1007/BF00731489
Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353–61.
Redhwan MAM, Hariprasad MG, Samaddar S, Hard SAAA, Yadav V, Mukherjee A, et al. Small interference (RNAi) technique: exploring its clinical applications, benefits and limitations. Eur J Clin Invest. 2023;53:1–14.
doi: 10.1111/eci.14039
Chris BM, Elizabeth HG, Huang MT-H, Debra JT. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol. 2010;29:393–5.
Svoboda P. Key mechanistic principles and considerations concerning RNA interference. Front Plant Sci. 2020;11:1–13.
doi: 10.3389/fpls.2020.01237
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene silencing strategies in cancer therapy: an update for drug resistance. Curr Med Chem. 2018;26:6282–303.
doi: 10.2174/0929867325666180403141554
Onpattro | Highlights of prescribing information. Dailymed.nlm.nih.gov https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=e87ec36f-b4b4-49d4-aea4-d4ffb09b0970 . Accessed 16 Apr 2024.
Givlaari | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/medicines/human/EPAR/givlaari . Accessed 16 Apr 2024.
Oxlumo | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/medicines/human/EPAR/oxlumo . Accessed 16 Apr 2024.
Leqvio | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/medicines/human/EPAR/leqvio . Accessed 16 Apr 2024.
Amvuttra | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/medicines/human/EPAR/famvuttra . Accessed 16 Apr 2024.
Rivfloza | Highlights of prescribing information. Dailymed.nlm.nih.gov https://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=ace9d4bc-4d20-4beb-9e9d-888690424833 . Accessed 16 Apr 2024.
Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: a review. J Biol Chem. 2021;296: 100416.
pubmed: 33600796
pmcid: 8005817
doi: 10.1016/j.jbc.2021.100416
Gheibi-Hayat SM, Jamialahmadi K. Antisense oligonucleotide (AS-ODN) technology: principle, mechanism and challenges. Biotechnol Appl Biochem. 2021;68:1086–94.
pubmed: 32964539
doi: 10.1002/bab.2028
Xiong H, Veedu RN, Diermeier SD. Recent advances in oligonucleotide therapeutics in oncology. Int J Mol Sci. 2021;22:3295.
pubmed: 33804856
pmcid: 8036554
doi: 10.3390/ijms22073295
Rein LAM, Yang H, Chao NJ. Applications of gene editing technologies to cellular therapies. Biol Blood Marrow Transplant. 2018;24:1537–45.
pubmed: 29601858
doi: 10.1016/j.bbmt.2018.03.021
Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578:229–36.
pubmed: 32051598
pmcid: 8992613
doi: 10.1038/s41586-020-1978-5
Wang F, Qin Z, Lu H, He S, Luo J, Jin C, et al. Clinical translation of gene medicine. J Gene Med. 2019;21:1–8.
doi: 10.1002/jgm.3108
del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, Vicente-Pascual M, Gómez-Aguado I, Battaglia LS, et al. Gene therapy. Adv Biochem Eng Biotechnol. 2019;123:127–41.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372.
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9.
pubmed: 20649561
pmcid: 2936830
doi: 10.1111/j.1476-5381.2010.00872.x
Kim IG, Jung WH, You G, Lee H, Shin YJ, Lim SW, et al. Efficient delivery of globotriaosylceramide synthase siRNA using polyhistidine-incorporated lipid nanoparticles. Macromol Biosci. 2023;2200423:1–10.
Beraza-Millor M, Rodríguez-Castejón J, Miranda J, del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Novel golden lipid nanoparticles with small interference ribonucleic acid for substrate reduction therapy in Fabry disease. Pharmaceutics. 2023;15:1936.
pubmed: 37514122
pmcid: 10385692
doi: 10.3390/pharmaceutics15071936
Cui S, Shin YJ, Fang X, Lee H, Eum SH, Ko EJ, et al. CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease phenotypes in a kidney organoid model. Transl Res. 2023;258:35–46.
pubmed: 36805562
doi: 10.1016/j.trsl.2023.02.005
Diaz-Font A, Chabás A, Grinberg D, Vilageliu L. RNAi-mediated inhibition of the glucosylceramide synthase (GCS) gene: a preliminary study towards a therapeutic strategy for Gaucher disease and other glycosphingolipid storage diseases. Blood Cells Mol Dis. 2006;37:197–203.
pubmed: 16959503
doi: 10.1016/j.bcmd.2006.07.002
Douillard-Guilloux G, Raben N, Takikita S, Batista L, Caillaud C, Richard E. Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Hum Mol Genet. 2008;17:3876–86.
pubmed: 18782850
doi: 10.1093/hmg/ddn290
Clayton NP, Nelson CA, Weeden T, Taylor KM, Moreland RJ, Scheule RK, et al. Antisense oligonucleotide-mediated suppression of muscle glycogen synthase 1 synthesis as an approach for substrate reduction therapy of pompe disease. Mol Ther Nucleic Acids. 2014;3: e206.
pubmed: 25350581
pmcid: 4217081
doi: 10.1038/mtna.2014.57
Kaidonis X, Liaw WC, Roberts AD, Ly M, Anson D, Byers S. Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses. Eur J Hum Genet. 2010;18:194–9.
pubmed: 19690583
doi: 10.1038/ejhg.2009.143
Dziedzic D, Wgrzyn G, Jakóbkiewicz-Banecka J. Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. Eur J Hum Genet. 2010;18:200–5.
pubmed: 19690584
doi: 10.1038/ejhg.2009.144
Dziedzic D, Narajczyk M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Simultaneous siRNA-mediated silencing of pairs of genes coding for enzymes involved in glycosaminoglycan synthesis. Acta Biochim Pol. 2012;59:293–8.
pubmed: 22590693
doi: 10.18388/abp.2012_2154
Chmielarz I, Gabig-Ciminska M, Malinowska M, Banecka-Majkutewicz Z, Wegrzyn A, Jakobkiewicz-Banecka J. Comparison of siRNA-mediated silencing of glycosaminoglycan synthesis genes and enzyme replacement therapy for mucopolysaccharidosis in cell culture studies. Acta Biochim Pol. 2012;59:697–702.
pubmed: 23251908
doi: 10.18388/abp.2012_2113
Canals I, Benetó N, Cozar M, Vilageliu L, Grinberg D. EXTL2 and EXTL3 inhibition with siRNAs as a promising substrate reduction therapy for Sanfilippo C syndrome. Sci Rep. 2015;5:3–7.
doi: 10.1038/srep13654
Felis A, Whitlow M, Kraus A, Warnock DG, Wallace E. Current and investigational therapeutics for Fabry disease. Kidney Int Rep. 2020;5:407–13.
pubmed: 32274449
doi: 10.1016/j.ekir.2019.11.013
Wanner C, Kimonis V, Politei J, Warnock DG, Üçeyler N, Frey A, et al. Understanding and modifying Fabry disease: rationale and design of a pivotal Phase 3 study and results from a patient-reported outcome validation study. Mol Genet Metab Rep. 2022;31: 100862.
pubmed: 35782623
pmcid: 9248229
Deegan PB, Goker-Alpan O, Geberhiwot T, Hopkin RJ, Lukina E, Tylki-Szymanska A, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study. Mol Genet Metab. 2023;138:106963.
Cortés-Saladelafont E, Fernández-Martín J, Ortolano S. Fabry disease and central nervous system involvement: from big to small, from brain to synapse. Int J Mol Sci. 2023;24:5246.
Miller JJ, Kanack AJ, Dahms NM. Progress in the understanding and treatment of Fabry disease. Biochim Biophys Acta Gen Subj. 2020;1864: 129437.
pubmed: 31526868
doi: 10.1016/j.bbagen.2019.129437
Weinreb NJ, Camelo JS, Charrow J, McClain MR, Mistry P, Belmatoug N. Gaucher disease type 1 patients from the ICGG Gaucher Registry sustain initial clinical improvements during twenty years of imiglucerase treatment. Mol Genet Metab. 2021;132:100–11.
pubmed: 33485799
doi: 10.1016/j.ymgme.2020.12.295
Zimran A, Elstein D, Gonzalez DE, Lukina EA, Qin Y, Dinh Q, et al. Treatment-naïve Gaucher disease patients achieve therapeutic goals and normalization with velaglucerase alfa by 4 years in phase 3 trials. Blood Cells Mol Dis. 2018;68:153–9.
pubmed: 27839979
doi: 10.1016/j.bcmd.2016.10.007
Titievsky L, Schuster T, Wang R, Younus M, Palladino A, Quazi K, et al. Safety and effectiveness of taliglucerase alfa in patients with Gaucher disease: an interim analysis of real-world data from a multinational drug registry (TALIAS). Orphanet J Rare Dis. 2022;17:1–11.
doi: 10.1186/s13023-022-02289-7
Wilson MW, Shu L, Hinkovska-Galcheva V, Jin Y, Rajeswaran W, Abe A, et al. Optimization of eliglustat-based glucosylceramide synthase inhibitors as substrate reduction therapy for Gaucher disease type 3. ACS Chem Neurosci. 2020;11:3464–73.
pubmed: 33035424
doi: 10.1021/acschemneuro.0c00558
Kong W, Lu C, Ding Y, Meng Y. Update of treatment for Gaucher disease. Eur J Pharmacol. 2022;926:175023.
Chien YH, Hwu WL, Lee NC. Pompe disease: early diagnosis and early treatment make a difference. Pediatr Neonatol. 2013;54:219–27.
pubmed: 23632029
doi: 10.1016/j.pedneo.2013.03.009
Ebbink BJ, Poelman E, Plug I, Lequin MH, van Doorn PA, Aarsen FK, et al. Cognitive decline in classic infantile Pompe disease: an underacknowledged challenge. Neurology. 2016;86:1260–1.
pubmed: 26944269
doi: 10.1212/WNL.0000000000002523
Ebbink BJ, Poelman E, Aarsen FK, Plug I, Régal L, Muentjes C, et al. Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain. Dev Med Child Neurol. 2018;60:579–86.
pubmed: 29573408
doi: 10.1111/dmcn.13740
Giugliani R. Mucopolysacccharidoses: from investigation to treatment, a century of discoveries. Investig Clin. 2018;59:19–20.
Filocamo M, Tomanin R, Bertola F, Morrone A. Biochemical and molecular analysis in mucopolysaccharidoses: what a paediatrician must know. Ital J Pediatr. 2018;44:129.
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: the sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis. 2019;1865: 165539.
pubmed: 31465828
doi: 10.1016/j.bbadis.2019.165539
Andrade F, Aldámiz-Echevarría L, Llarena M, Couce ML. Sanfilippo syndrome: overall review. Pediatr Int. 2015;57:331–8.
pubmed: 25851924
doi: 10.1111/ped.12636
Mepsevii | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/medicines/human/EPAR/mepsevii . Accessed 16 Apr 2024.
Concolino D, Deodato F, Parini R. Enzyme replacement therapy: efficacy and limitations. Ital J Pediatr. 2018;44:120.
Tucci F, Consiglieri G, Cossutta M, Bernardo ME, Maria C, Bernardo ME. Current and future perspective in hematopoietic stem progenitor cell-gene therapy for inborn errors of metabolism. Hemasphere. 2020;7:e953.
Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, et al. Mucopolysaccharidosis type I: current treatments, limitations, and prospects for improvement. Biomolecules. 2021;11:189.
Benetó N, Vilageliu L, Grinberg D. Sanfilippo syndrome: molecular basis, disease models and therapeutic approaches. Int J Mol Sci. 2020;21:7819.
Sawamoto K, Stapleton M, Alméciga-Díaz CJ, Espejo-Mojica AJ, Losada JC, Suarez DA, et al. Therapeutic options for mucopolysaccharidoses: current and emerging treatments. Drugs. 2019;79:1103–34.
pubmed: 31209777
doi: 10.1007/s40265-019-01147-4
Annaval T, Wild R, Crétinon Y, Sadir R, Vivès RR, Lortat-Jacob H. Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules. 2020;25:4215.
Xu W, Jiang X, Huang L, Sciences B, Sar HK. RNA interference technology. Comprehensive biotechnology. 2019;560–75.
Friedrich M, Aigner A. Therapeutic siRNA: state of the art and future perspectives. BioDrugs. 2022;36:549–71.
pubmed: 35997897
pmcid: 9396607
doi: 10.1007/s40259-022-00549-3
Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905: 174178.
pubmed: 34044011
doi: 10.1016/j.ejphar.2021.174178
Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342:919–27.
pubmed: 16598842
doi: 10.1016/j.bbrc.2006.02.049
Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009;61:746–59.
pubmed: 19389436
doi: 10.1016/j.addr.2009.04.004
Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington’s disease therapy: SiRNA versus shRNA. Transl Neurodegener. 2017;6:1–10.
doi: 10.1186/s40035-017-0101-9
Torrecilla J, del Pozo-Rodríguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, et al. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surfaces B Biointerfaces. 2016;146:808–17.
pubmed: 27451369
doi: 10.1016/j.colsurfb.2016.07.026
Osborn MF, Khvorova A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 2018;28:128–36.
pubmed: 29746209
pmcid: 5994667
doi: 10.1089/nat.2018.0725
Liu F, Wang C, Gao Y, Li X, Tian F, Zhang Y, et al. Current transport systems and clinical applications for small interfering RNA (siRNA) drugs. Mol Diagnosis Ther. 2018;22:551–69.
doi: 10.1007/s40291-018-0338-8
Jadhav V, Vaishnaw A, Fitzgerald K, Maier MA. RNA interference in the era of nucleic acid therapeutics. Nat Biotechnol. 2024;42:394–405.
pubmed: 38409587
doi: 10.1038/s41587-023-02105-y
Askari FK, McDonnell WM. Antisense-oligonucleotide therapy. Mol Med. 2012;334:316–8.
Oberemok V, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov M V, Kasich IN, et al. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: we should continue the journey. Molecules. 2018;23:1302.
Biamonti G, Amato A, Belloni E, Di Matteo A, Infantino L, Pradella D, et al. Alternative splicing in Alzheimer’s disease. Aging Clin Exp Res. 2021;33:747–58.
pubmed: 31583531
doi: 10.1007/s40520-019-01360-x
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense oligonucleotide therapy for the nervous system: from bench to bedside with emphasis on pediatric neurology. Pharmaceutics. 2022;14:2389.
Da JuX, Xu J, Sun ZS. CRISPR editing in biological and biomedical investigation. J Cell Biochem. 2018;119:52–61.
doi: 10.1002/jcb.26154
Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, et al. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol. 2018;19:1–20.
doi: 10.1186/s13059-018-1518-x
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for improving HDR efficiency. Front Genet. 2019;10:1–9.
pubmed: 30804975
pmcid: 6370629
Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2020;25:249–54.
doi: 10.1038/s41591-018-0326-x
Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun. 2018;9:3497.
pubmed: 30158648
pmcid: 6115392
doi: 10.1038/s41467-018-05843-9
Casvegy. | Highlights of prescribing information. Dailymed.nlm.nih.gov. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7c3e12ad-e2fe-4d3f-a630-ea7364d9e846 . Accessed 16 Apr 2024.
Frangoul H, Altshuler D, Cappellini MD, Chen Y-S, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384:252–60.
pubmed: 33283989
doi: 10.1056/NEJMoa2031054
Coutinho MF, Santos JI, Alves S. Less is more: substrate reduction therapy for lysosomal storage disorders. Int J Mol Sci. 2016;17:1065.
Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006;3:199–204.
pubmed: 16489337
doi: 10.1038/nmeth854
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR–Cas9 technology. Curr Genet. 2020;66:447–62.
pubmed: 31691023
doi: 10.1007/s00294-019-01040-3
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: toward clinical translation. Int Rev Cell Mol Biol. 2022;372:207–93.
Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021;6:1–16.
doi: 10.1002/btm2.10213
De Haes W, Van Mol G, Merlin C, De Smedt SC, Vanham G, Rejman J. Internalization of mRNA lipoplexes by dendritic cells. Mol Pharm. 2012;9:2942–9.
pubmed: 22894540
doi: 10.1021/mp3003336
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6:53.
Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ, Das KT. A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model system. Sci Rep. 2021;11:1–11.
doi: 10.1038/s41598-021-98657-7
Connoly JB. Lentiviruses in gene therapy clinical reseach. Gene Ther. 2002;9:1730–4.
doi: 10.1038/sj.gt.3301893
Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, et al. Preclinical safety and efficacy of human CD34 + cells transduced with lentiviral vector for the treatment of wiskott-aldrich syndrome. Mol Ther. 2013;21:175–84.
pubmed: 22371846
doi: 10.1038/mt.2012.23
Yew CHT, Gurumoorthy N, Nordin F, Tye GJ, Zaman WSWK, Tan JJ, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications. PeerJ. 2022;10:1–36.
doi: 10.7717/peerj.13704
Slade N. Viral vectors in gene therapy. Period Biol. 2001;103:139–43.
Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, et al. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg. 1996;62:1669–76.
pubmed: 8957370
doi: 10.1016/S0003-4975(96)00946-0
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12:341–55.
pubmed: 21499295
doi: 10.1038/nrg2988
Xu CL, Ruan MZC, Mahajan VB, Tsang SH. Viral delivery systems for CRISPR. Viruses. 2019;11:1–12.
doi: 10.3390/v11010028
Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334–8.
pubmed: 26829317
pmcid: 4786489
doi: 10.1038/nbt.3469
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of non-viral gene delivery and recent progress. Int J Biol Macromol. 2021;183:2055–73.
pubmed: 34087309
pmcid: 8266766
doi: 10.1016/j.ijbiomac.2021.05.192
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.
pubmed: 12728277
doi: 10.1038/nrg1066
Wang Y, Shao W. Innate immune response to viral vectors in gene therapy. Viruses. 2023;15:1801.
pubmed: 37766208
pmcid: 10536768
doi: 10.3390/v15091801
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–18.
pubmed: 29704747
pmcid: 5944364
doi: 10.1016/j.biomaterials.2018.04.031
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–55.
pubmed: 25022906
doi: 10.1038/nrg3763
Guan SRJ. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–43.
pubmed: 28094775
doi: 10.1038/gt.2017.5
Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA. 1989;86:6077–81.
pubmed: 2762315
pmcid: 297778
doi: 10.1073/pnas.86.16.6077
Wang T, Larcher LM, Ma L, Veedu RN. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules. 2018;23:2564.
pubmed: 30297632
pmcid: 6222501
doi: 10.3390/molecules23102564
Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev. 2021;177: 113930.
pubmed: 34403751
doi: 10.1016/j.addr.2021.113930
Kulkarni JA, Cullis PR, Van Der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28:146–57.
pubmed: 29683383
doi: 10.1089/nat.2018.0721
Ramezanpour M, Schmidt ML, Bodnariuc I, Kulkarni JA, Leung SSW, Cullis PR, et al. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale. 2019;11:14141–6.
pubmed: 31334542
doi: 10.1039/C9NR02297J
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. Wiley Interdiscipl Rev RNA. 2015;6:471–99.
doi: 10.1002/wrna.1288
Zhang M, Sun J, Li M, Jin X. Modified mRNA-LNP vaccines confer protection against experimental DENV-2 infection in mice. Mol Ther Methods Clin Dev. 2020;18:702–12.
pubmed: 32913878
pmcid: 7452130
doi: 10.1016/j.omtm.2020.07.013
Andresen JL, Fenton OS. Nucleic acid delivery and nanoparticle design for COVID vaccines. MRS Bull. 2021;46:1–8.
doi: 10.1557/s43577-021-00169-2
Gisbert-Garzaran M, Lozano D, Matsumoto K, Komatsu A, Manzano M, Tamanoi F, et al. Designing mesoporous silica nanoparticles to overcome biological barriers by incorporating targeting and endosomal escape. ACS Appl Mater Interfaces. 2021;13:9656–66.
pubmed: 33596035
pmcid: 7944478
doi: 10.1021/acsami.0c21507
Wen Y, Guo Z, Du Z, Fang R, Wu H, Zeng X, et al. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. JBMT. 2012;33:8111–21.
Qi Yang SL. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscipl Rev Nanomed Nanobiotechnol. 2015;7:655–77.
doi: 10.1002/wnan.1339
Shi D, Beasock D, Fessler A, Szebeni J, Y. Ljubimova JY, Afonin KA, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, poly(ethylene) glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079.
Hirsjärvi S, Dufort S, Bastiat G, Saulnier P, Passirani C, Coll JL, et al. Surface modification of lipid nanocapsules with polysaccharides: from physicochemical characteristics to in vivo aspects. Acta Biomater. 2013;9:6686–93.
pubmed: 23395817
doi: 10.1016/j.actbio.2013.01.038
Delgado D, Gascón AR, Del Pozo-Rodríguez A, Echevarría E, Ruiz De Garibay AP, Rodríguez JM, et al. Dextran-protamine-solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice. Int J Pharm. 2012;425:35–43.
pubmed: 22226874
doi: 10.1016/j.ijpharm.2011.12.052
Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther. 2008;16:1624–29.
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6:252–73.
pubmed: 12935438
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA delivery for tissue engineering and regenerative medicine applications. Tissue Eng Part A. 2019;25:91–112.
Gastaldi L, Battaglia L, Peira E, Chirio D, Muntoni E, Solazzi I, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm. 2014;87:433–44.
pubmed: 24833004
doi: 10.1016/j.ejpb.2014.05.004
Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GFKA. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des. 2016;22:1177–93.
pubmed: 26685681
pmcid: 4900538
doi: 10.2174/1381612822666151221150733
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomed. 2014;9:795–811.
Thakker DR, Natt F, Hüsken D, Maier R, Müller M, Van Der Putten H, et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci USA. 2004;101:17270–5.
pubmed: 15569935
pmcid: 535368
doi: 10.1073/pnas.0406214101
Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, et al. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-synuclein expression in a model of Parkinson’s disease. Mol Ther Nucleic Acids. 2017;9:57–68.
pubmed: 29246324
pmcid: 5602522
doi: 10.1016/j.omtn.2017.08.013
Rodríguez-Castejón J, Beraza-Millor M, Solinís MÁ, Rodríguez-Gascón A, del Pozo-Rodríguez A. Targeting strategies with lipid vectors for nucleic acid supplementation therapy in Fabry disease: a systematic review. Drug Deliv Transl Res. 2024.
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep. 2021;3: 100300.
pubmed: 34159305
pmcid: 8203845
doi: 10.1016/j.jhepr.2021.100300
Cui H, Zhu X, Li S, Wang P, Fang J. Liver-targeted delivery of oligonucleotides with N-acetylgalactosamine conjugation. ACS Omega. 2021;6:16259–65.
pubmed: 34235295
pmcid: 8246477
doi: 10.1021/acsomega.1c01755
Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol Ther. 2020;28:1759–71.
pubmed: 32592692
pmcid: 7403466
doi: 10.1016/j.ymthe.2020.06.015
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O’Driscoll CM. Advances in the design of (nano)formulations for delivery of antisense oligonucleotides and small interfering RNA: focus on the central nervous system. Mol Pharm. 2021;18:1491–506.
pubmed: 33734715
pmcid: 8824433
doi: 10.1021/acs.molpharmaceut.0c01238
Mirzaei S, Mahabady MK, Zabolian A, Abbaspour A, Fallahzadeh P, Noori M, et al. Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: current status with an emphasis on delivery systems. Life Sci. 2021;275: 119368.
pubmed: 33741417
doi: 10.1016/j.lfs.2021.119368
Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020;8:4109–28.
pubmed: 32638706
doi: 10.1039/D0BM00809E
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
pubmed: 27208862
doi: 10.1016/j.jconrel.2016.05.044
Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes. Hum Gene Ther. 2011;22:207–15.
Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the promate brain following intravenous administration. Mol Ther. 2003;7:11–8.
pubmed: 12573613
doi: 10.1016/S1525-0016(02)00018-7
Arora S, Sharma D, Singh J. GLUT-1: an effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem Neurosci. 2020;11:1620–33.
pubmed: 32352752
doi: 10.1021/acschemneuro.0c00076
Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Control Release. 2013;167:1–10.
pubmed: 23352910
doi: 10.1016/j.jconrel.2013.01.016
Dos Santos RB, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release. 2018;286:264–78.
doi: 10.1016/j.jconrel.2018.07.043
Dos Santos Rodrigues B, Kanekiyo T, Singh J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm Res. 2019;36:161.
Dos Santos RB, Kanekiyo T, Singh J. Nerve growth factor gene delivery across the blood brain barrier to reduce beta amyloid accumulation in AD mice. Mol Pharm. 2020;17:2054–63.
doi: 10.1021/acs.molpharmaceut.0c00218
Dos Santos RB, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomed. 2019;14:6497–517.
doi: 10.2147/IJN.S215941
Dos Santos RB, Lakkadwala S, Kanekiyo T, Singh J. Dual-modified liposome for targeted and enhanced gene delivery into mice brain. J Pharmacol Exp Ther. 2020;374:354–65.
doi: 10.1124/jpet.119.264127
Choi H, Choi K, Kim DH, Oh BK, Yim H, Jo S, et al. Strategies for targeted delivery of exosomes to the brain: advantages and challenges. Pharmaceutics. 2022;14:672.
pubmed: 35336049
pmcid: 8948948
doi: 10.3390/pharmaceutics14030672
Wei L, Guo XY, Yang T, Yu MZ, Chen DW, Wang JC. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510:394–405.
pubmed: 27374198
doi: 10.1016/j.ijpharm.2016.06.127
Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014;21:75–86.
pubmed: 24102636
doi: 10.3109/10717544.2013.838713
Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7:1–10.
doi: 10.1038/s41598-017-01819-9
Tomita N, Morishita R, Yamamoto K, Higaki J, Dzau VJ, Ogihara T, et al. Targeted gene therapy for rat glomerulonephritis using HVJ-immunoliposomes. J Gene Med. 2002;4:527–35.
pubmed: 12221646
doi: 10.1002/jgm.300
Kowalski PS, Zwiers PJ, Morselt HWM, Kuldo JM, Leus NGJ, Ruiters MHJ, et al. Anti-VCAM-1 SAINT-O-Somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J Control Release. 2014;176:64–75.
pubmed: 24389338
doi: 10.1016/j.jconrel.2013.12.029
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, et al. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging. 2020;12:15856–74.
pubmed: 32745073
pmcid: 7467391
doi: 10.18632/aging.103794
Li Y, Chen M, Zhao Y, Li M, Qin Y, Cheng S, et al. Advance in drug delivery for ageing skeletal muscle. Front Pharmacol. 2020;11:1–9.
Vorrius B, Qiao Z, Ge J, Chen Q. Smart strategies to overcome drug delivery challenges in the musculoskeletal system. Pharmaceuticals. 2023;16:967.
Meena NK, Raben N. Pompe disease: new developments in an old lysosomal storage disorder. Biomolecules. 2020;10:1339.
Van Haute D, Berlin JO. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles. Ther Deliv. 2016;8:763–74.
doi: 10.4155/tde-2017-0057
Ebner DC, Bialek P, El-Kattan AF, Ambler CM, Tu M. Strategies for skeletal muscle targeting in drug discovery. Curr Pharm Des. 2015;21:1327–36.
pubmed: 25269560
doi: 10.2174/1381612820666140929095755
Samoylova TI, Smith BF. Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve. 1999;22:460–6.
pubmed: 10204780
doi: 10.1002/(SICI)1097-4598(199904)22:4<460::AID-MUS6>3.0.CO;2-L
Seow Y, Yin H, Wood MJA. Identification of a novel muscle targeting peptide in mdx mice. Peptides. 2010;31:1873–7.
pubmed: 20621144
doi: 10.1016/j.peptides.2010.06.036
Wang X, Liu S, Sun Y, Yu X, Lee SM, Cheng Q, et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc. 2023;18:265–91.
pubmed: 36316378
doi: 10.1038/s41596-022-00755-x
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? Nanoscale Adv. 2021;3:1209–29.
pubmed: 36132858
pmcid: 9416870
doi: 10.1039/D0NA00863J
Guimaraes PPG, Zhang R, Spektor R, Tan M, Chung A, Billingsley MM, et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J Control Release. 2019;316:404–17.
pubmed: 31678653
pmcid: 7032071
doi: 10.1016/j.jconrel.2019.10.028
Godbout K, Tremblay JP. Delivery of RNAs to specific organs by lipid nanoparticles for gene therapy. Pharmaceutics. 2022;14:2129.
pubmed: 36297564
pmcid: 9611171
doi: 10.3390/pharmaceutics14102129
Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11:1–12.
doi: 10.1038/s41467-020-17029-3
Matloka M, Klein AF, Rau F, Furling D. Cells of matter-in vitro models for myotonic dystrophy. Front Neurol. 2018;9:1–9.
doi: 10.3389/fneur.2018.00361
Arandel L, Espizonoza MP, Bazinet AM, Diniz DDD, Naouar FR, et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech. 2017;10:487–97.
pubmed: 28188264
pmcid: 5399563
Massenet J, Gitiaux C, Magnan M, Cuvellier S, Hubas A, Nusbaum P, et al. Derivation and characterization of immortalized human muscle satellite cell clones from muscular dystrophy patients and healthy individuals. Cells. 2020;9:1–19.
doi: 10.3390/cells9081780
Shen JS, Meng XL, Schiffmann R, Brady RO, Kaneski CR. Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab. 2007;92:137–44.
pubmed: 17644384
pmcid: 2063578
doi: 10.1016/j.ymgme.2007.06.003
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
pubmed: 16904174
doi: 10.1016/j.cell.2006.07.024
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg JCZ. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32:266–77.
pubmed: 28615311
pmcid: 5545611
doi: 10.1152/physiol.00036.2016
Jeffries GDM, Xu S, Lobovkina T, Kirejev V, Tusseau F, Gyllensten C, et al. 3D micro-organisation printing of mammalian cells to generate biological tissues. Sci Rep. 2020;10:1–10.
doi: 10.1038/s41598-020-74191-w
Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic to Transl Sci. 2019;4:845–54.
doi: 10.1016/j.jacbts.2019.10.008
Yan S, Tu Z, Li S, Li XJ. Use of CRISPR/Cas9 to model brain diseases. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:488–92.
doi: 10.1016/j.pnpbp.2017.04.003
Huang JY, Kan SH, Sandfeld EK, Dalton ND, Rangel AD, Chan Y, et al. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness. Sci Rep. 2020;10:1–13.
Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, et al. α-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA. 1997;94:2540–4.
pubmed: 9122231
pmcid: 20124
doi: 10.1073/pnas.94.6.2540
Inui M, Miyado M, Igarashi M, Tamano M, Kubo A, Yamashita S, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep. 2014;4:1–8.
doi: 10.1038/srep05396
Miller JJ, Aoki K, Moehring F, Murphy CA, O’Hara CL, Tiemeyer M, et al. Neuropathic pain in a Fabry disease rat model. JCI Insight. 2018;3:1–19.
doi: 10.1172/jci.insight.99171
Adachi T, El-Hattab AW, Jain R, Nogales Crespo KA, Quirland Lazo CI, Scarpa M, et al. Enhancing equitable access to rare disease diagnosis and treatment around the world: a review of evidence, policies, and challenges. Int J Environ Res Public Health. 2023;20:4732.
Fonseca DA, Amaral I, Pinto AC, Cotrim MD. Orphan drugs: major development challenges at the clinical stage. Drug Discov Today. 2019;24:867–72.
pubmed: 30658132
doi: 10.1016/j.drudis.2019.01.005
Kempf L, Goldsmith JC, Temple R. Challenges of developing and conducting clinical trials in rare disorders. Am J Med Genet Part A. 2018;176:773–83.
pubmed: 28815894
doi: 10.1002/ajmg.a.38413
Bell SA, Tudur SC. A comparison of interventional clinical trials in rare versus non-rare diseases: an analysis of ClinicalTrials.gov. Orphanet J Rare Dis. 2014;9:170.
pubmed: 25427578
pmcid: 4255432
doi: 10.1186/s13023-014-0170-0
Volmar CH, Wahlestedt CBS. Orphan diseases: state of the drug discovery art. Wien Med Wochenschr. 2017;176:139–48.
Kakkis ED, O’Donovan M, Cox G, Hayes M, Goodsaid F, Tandon PK, et al. Recommendations for the development of rare disease drugs using the accelerated approval pathway and for qualifying biomarkers as primary endpoints. Orphanet J Rare Dis. 2015;10:16.
Committee for Orphan Medicinal Products (COMP) | European Medicines Agency. Ema.europa.ue/en. https://www.ema.europa.eu/en/committees/committee-orphan-medicinal-products-comp#:~:text=Role%20of%20the%20COMP&text=The%20COMP%20is%20responsible%20for,life%2Dt .
Sheean ME, Stoyanova-Beninska V, Capovilla G, Duarte D, Hofer MP, Hoffmann M, et al. Nonclinical data supporting orphan medicinal product designations: lessons from rare neurological conditions. Drug Discov Today. 2018;23:26–48.
pubmed: 28987289
doi: 10.1016/j.drudis.2017.09.015
Hofer MP, Hedman H, Mavris M, Koenig F, Vetter T, Posch M, et al. Marketing authorisation of orphan medicines in Europe from 2000 to 2013. Drug Discov Today. 2018;23:424–33.
pubmed: 29074441
doi: 10.1016/j.drudis.2017.10.012
Orphan medicinal product designation. European Medicine Agency. https://www.ema.europa.eu/en/documents/other/orphan-medicines-figures-2000-2022_en.pdf . Accessed 16 Apr 2024.