Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment.


Journal

Neurotoxicity research
ISSN: 1476-3524
Titre abrégé: Neurotox Res
Pays: United States
ID NLM: 100929017

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 05 06 2023
accepted: 28 07 2024
revised: 17 12 2023
medline: 23 8 2024
pubmed: 23 8 2024
entrez: 23 8 2024
Statut: epublish

Résumé

Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.

Identifiants

pubmed: 39177895
doi: 10.1007/s12640-024-00716-0
pii: 10.1007/s12640-024-00716-0
doi:

Substances chimiques

Melatonin JL5DK93RCL

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

38

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monitor: Int Med J Experimental Clin Res 16(2):BR61–67
Ahn JH, Kim M, Park S, Jang W, Park J, Oh E, Cho JW, Kim JS, Youn J (2020) Prolonged-release melatonin in Parkinson’s disease patients with a poor sleep quality: a randomized trial. Parkinsonism Relat Disord 75:50–54
pubmed: 32480307 doi: 10.1016/j.parkreldis.2020.03.029
Al-Buhadily AK, Al-Uqabi RU, Al-Gareeb AI (2023) Evaluation of Protective Effect of Metformin in rats with experimental osteoarthritis. Mustansiriya Med J 22(1):50–53
doi: 10.4103/mj.mj_43_22
Al-Kuraishi AH, Khalil HI, Hasan HH, Al-Kuraishy HM (2021) Are alterations in melatonin and inflammatory cytokine serum levels linked with recurrent abortion in pregnant women with acute toxoplasmosis: the interacted nexus. Parity 1:0–94
Al-Kuraishi AH, Khalil HI, Hassan HH, Al-kuraishy HM (2023) Placental dysfunction and acute toxoplasmosis: the role of melatonin in relation to inflammatory cytokines Interleukin-10 and Interleukin-12. J Microscopy Ultrastructure 11(2):87–91
doi: 10.4103/jmau.jmau_122_20
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK (2023) The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Research Reviews. a 14:102075
Al-kuraishy HM, Al‐Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GE (2023) SARS‐COV‐2 infection and Parkinson’s disease: possible links and perspectives. J Neurosci Res 101(6):952–975 c
pubmed: 36717481 doi: 10.1002/jnr.25171
Al-Kuraishy HM, Al-Gareeb AI, Elewa YH, Zahran MH, Alexiou A, Papadakis M, Batiha GE (2023b) Parkinson’s disease risk and hyperhomocysteinemia: the possible link. Cellular and Molecular Neurobiology. b 19:1–7
Al-Kuraishy HM, Al-Gareeb AI, Selim HM, Alexiou A, Papadakis M, Negm WA, Batiha GE (2023c) Does vitamin D protect or treat Parkinson’s disease? A narrative review. Naunyn-Schmiedeberg’s Archives of Pharmacology. d 9:1–8
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GE, Klionsky DJ The beneficial role of autophagy in multiple sclerosis: yes or no? Autophagy 2023 i 27:1–6
Alghamdi B (2018) The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 96(7):1136–1149
pubmed: 29498103 pmcid: 6001545 doi: 10.1002/jnr.24220
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Saad HM, Batiha GE (2023) The Molecular Pathway of p75 Neurotrophin Receptor (p75NTR) in Parkinson’s Disease: The Way of New Inroads. Molecular Neurobiology. a 28:1–2
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GE (2023b) Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 29(1):142
pubmed: 37880579 pmcid: 10598971 doi: 10.1186/s10020-023-00742-2
Ali NH, Alhamdan NA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GE (2023c) Irisin/PGC-1α/FNDC5 pathway in Parkinson’s disease: truth under the throes. Naunyn Schmiedebergs Arch Pharmacol b11:1–1
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GE Role of brain liver X receptor in Parkinson’s disease: hidden treasure and emerging opportunities. Mol Neurobiol 2023 Aug 22:1–7
Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AK, Al-Gareeb AI, Saad HM, Batiha GE (2023) The potential role of cholesterol in Parkinson’s disease neuropathology: perpetrator or victim. Neurol Sci a10:1–4
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Ashour NA, Jabir MS, Negm WA, Batiha GE (2023b) Metformin role in Parkinson’s disease: a double-sword effect. Molecular and Cellular Biochemistry. d 2:1–7
Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2009) The retina in Parkinson’s disease. Brain 132(Pt 5):1128–1145. https://doi.org/10.1093/brain/awp068
doi: 10.1093/brain/awp068 pubmed: 19336464
Arioz BI, Tarakcioglu E, Olcum M, Genc S (2021) The role of melatonin on NLRP3 inflammasome activation in diseases. Antioxidants 10(7):1020
pubmed: 34202842 pmcid: 8300798 doi: 10.3390/antiox10071020
Asadpoordezaki Z, Coogan AN, Henley BM (2023) Chronobiology of Parkinson’s disease: past, present and future. Eur J Neurosci 57(1):178–200
pubmed: 36342744 doi: 10.1111/ejn.15859
Biran V, Decobert F, Bednarek N, Boizeau P, Benoist J-F, Claustrat B, Barré J, Colella M, Frérot A, Garnotel R (2019) Melatonin levels in preterm and term infants and their mothers. Int J Mol Sci 20(9):2077
pubmed: 31035572 pmcid: 6540351 doi: 10.3390/ijms20092077
Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson’s disease. Lancet Neurol 19(2):170–178
pubmed: 31521533 doi: 10.1016/S1474-4422(19)30287-X
Bordet R, Devos D, Brique S, Touitou Y, Guieu J, Libersa C, Destee A (2003) Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26(2):65–72
pubmed: 12671525 doi: 10.1097/00002826-200303000-00005
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP (2020) Melatonin receptor ligands: a pharmaco‐chemical perspective. J Pineal Res 69(3):e12672
pubmed: 32531076 doi: 10.1111/jpi.12672
Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363(6423):187–192
pubmed: 30630934 pmcid: 6440650 doi: 10.1126/science.aat4104
Bubenik G, Konturek S (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13
pubmed: 21451205
Buijink MR, Michel S (2021) A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 157(1):73–94
pubmed: 33370457 pmcid: 8048448 doi: 10.1111/jnc.15286
Cerri S, Mus L, Blandini F (2019) Parkinson’s disease in women and men: what’s the difference? J Parkinson’s Disease 9(3):501–515
doi: 10.3233/JPD-191683
Choudhury ME, Miyanishi K, Takeda H, Tanaka J (2021) Microglia and the aging brain: are geriatric Microglia Linked to Poor Sleep Quality? Int J Mol Sci 22(15):7824
pubmed: 34360590 pmcid: 8345993 doi: 10.3390/ijms22157824
Cochrane A, Robertson IH, Coogan AN (2012) Association between circadian rhythms, sleep and cognitive impairment in healthy older adults: an actigraphic study. J Neural Transm 119:1233–1239
pubmed: 22488446 doi: 10.1007/s00702-012-0802-2
De Pablo-Fernández E, Courtney R, Warner TT, Holton JL (2018) A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurol 75(8):1008–1012
pubmed: 29710120 pmcid: 6142937 doi: 10.1001/jamaneurol.2018.0640
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549
pubmed: 20148687 doi: 10.1146/annurev-physiol-021909-135821
Fifel K, Cooper HM (2014) Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson’s disease. Neurobiol Dis 71:359–369
pubmed: 25171792 doi: 10.1016/j.nbd.2014.08.024
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23(1):5–22
pubmed: 27873462 doi: 10.1111/cns.12655
Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, Cedeño MR, Nadarajah CJ, Ezerskiy LA (2019) Circadian clock protein Rev-erbα regulates neuroinflammation. Proc Natl Acad Sci 116(11):5102–5107
pubmed: 30792350 pmcid: 6421453 doi: 10.1073/pnas.1812405116
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19(8):453–469
pubmed: 29934559 doi: 10.1038/s41583-018-0026-z
Hirata F, Hayaishi O, Tokuyama T, Senoh S (1974) In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 249(4):1311–1313
pubmed: 4814344 doi: 10.1016/S0021-9258(19)42976-1
Ibrahim HA, Hussein AM, Gabr M, El-Saeed RA, Ammar OA, Mosa AA, Abdel-Aziz AA (2023) Effect of melatonin on alpha synuclein and autophagy in dopaminergic neuronal differentiation of adipose mesenchymal stem cells. Rep Biochem Mol Biology 12(1):13
Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46:639–661
pubmed: 22899187 doi: 10.1007/s12035-012-8318-1
Jiang W, Wu H, Yu X, Wang Y, Gu W, Wei W, Li B, Jiang X, Wang Y, Hou W (2021) Third-hand smoke exposure is associated with abnormal serum melatonin level via hypomethylation of CYP1A2 promoter: evidence from human and animal studies. Environ Pollut 277:116669
pubmed: 33652180 doi: 10.1016/j.envpol.2021.116669
Jiao L, Wang Y, Zhang S, Wang Y, Liu Z, Liu Z, Zhou Y, Zhou H, Xu X, Li Z (2022) Melatonin improves cardiac remodeling and brain–heart sympathetic hyperactivation aggravated by light disruption after myocardial infarction. J Pineal Res 73(4):e12829
pubmed: 36031757 doi: 10.1111/jpi.12829
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP (2016) Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 173(18):2702–2725
pubmed: 27314810 pmcid: 4995287 doi: 10.1111/bph.13536
Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P (2019) Triggers, facilitators, and aggravators: redefining Parkinson’s disease pathogenesis. Trends Neurosci 42(1):4–13
pubmed: 30342839 doi: 10.1016/j.tins.2018.09.007
Jung YJ, Choi H, Oh E (2022) Melatonin attenuates MPP+-induced apoptosis via heat shock protein in a Parkinson’s disease model. Biochem Biophys Res Commun 621:59–66
pubmed: 35810592 doi: 10.1016/j.bbrc.2022.06.099
Khuzhakhmetova L, Teply D, Bazhanova E (2020) Pharmacological correction of alterations in apoptosis of neurons of the hypothalamic suprachiasmatic nucleus and pinealocytes in rats during aging and under stress. Adv Gerontol 10:128–134
doi: 10.1134/S2079057020020083
Klettner A, Kampers M, Töbelmann D, Roider J, Dittmar M (2021) The influence of melatonin and light on VEGF secretion in primary RPE cells. Biomolecules 11(1):114
pubmed: 33467052 pmcid: 7830335 doi: 10.3390/biom11010114
Kong P-J, Byun J-S, Lim S-Y, Lee J-J, Hong S-J, Kwon K-J, Kim S-S (2008) Melatonin induces akt phosphorylation through melatonin receptor-and PI3K-dependent pathways in primary astrocytes. Korean J Physiol Pharmacol 12(2):37–41
pubmed: 20157392 pmcid: 2817532 doi: 10.4196/kjpp.2008.12.2.37
Koprich JB, Kalia LV, Brotchie JM (2017) Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18(9):515–529
pubmed: 28747776 doi: 10.1038/nrn.2017.75
Kunz D, Oster H, Rawashdeh O, Neumann WJ, Münte T, Berg D (2023) Sleep and circadian rhythms in α-synucleinopathies‐perspectives for disease modification. Acta Physiol e13966
Leite Pacheco R, de Oliveira Cruz Latorraca C, Adriano Leal Freitas da Costa A, Luiza Cabrera Martimbianco, Vianna Pachito A, Riera D (2018) R. Melatonin for preventing primary headache: A systematic review. International Journal of Clinical Practice. 72(7):e13203
Lewis PA (2012) James Parkinson: the man behind the shaking palsy. J Parkinson’s Disease 2(3):181–187
doi: 10.3233/JPD-2012-012108
LeWitt PA, Chaudhuri KR (2020) Unmet needs in Parkinson disease: motor and non-motor. Parkinsonism Relat Disord 80:S7–S12
pubmed: 33349582 doi: 10.1016/j.parkreldis.2020.09.024
Li L, Zhao Z, Ma J, Zheng J, Huang S, Hu S, Gu Q, Chen S (2020) Elevated plasma melatonin levels are correlated with the non-motor symptoms in Parkinson’s Disease: a cross-sectional study. Front NeuroSci. ;14
Liguori C, Fernandes M, Cerroni R, Ludovisi R, Mercuri NB, Stefani A, Pierantozzi M (2022) Effects of melatonin prolonged-release on both sleep and motor symptoms in Parkinson’s disease: a preliminary evidence. Neurol Sci 43(9):5355–5362
pubmed: 35536495 pmcid: 9385777 doi: 10.1007/s10072-022-06111-x
Liu X, Yu H, Wang Y, Li S, Cheng C, Al-Nusaif M, Le W (2022) Altered Motor Performance, Sleep EEG, and Parkinson’s Disease Pathology Induced by Chronic Sleep Deprivation in Lrrk2 G2019S mice. Neurosci Bull 38(10):1170–1182
pubmed: 35612787 pmcid: 9554065 doi: 10.1007/s12264-022-00881-2
Lynch HJ, Wurtman RJ (2020) Melatonin levels as they relate to reproductive physiology. The pineal gland. CRC, pp 103–123
Lynch HJ, Wang P, Wurtman RJ (1973) Increase in rat pineal melatonin content following L-dopa administration. Life Sci 12(4):145–151
doi: 10.1016/0024-3205(73)90128-8
Maggio R, Vaglini F, Rossi M, Fasciani I, Pietrantoni I, Marampon F, Corsini GU, Scarselli M, Millan MJ (2019) Parkinson’s disease and light: the bright and the dark sides. Brain Res Bull 150:290–296
pubmed: 31226407 doi: 10.1016/j.brainresbull.2019.06.013
Markus RP, Cecon E, Pires-Lapa MA (2013) Immune-pineal axis: nuclear factor κB (NF-κB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci 14(6):10979–10997
pubmed: 23708099 pmcid: 3709713 doi: 10.3390/ijms140610979
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS (2021) Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first-line defense. Int J Mol Sci 22(22):12143
pubmed: 34830026 pmcid: 8620487 doi: 10.3390/ijms222212143
Mattam U, Jagota A (2015) Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16:109–123
pubmed: 25430725 doi: 10.1007/s10522-014-9541-0
Mayo JC, Sainz RM, Tan D-X, Antolín I, Rodríguez C, Reiter RJ (2005) Melatonin and Parkinson’s disease. Endocrine 27:169–178
pubmed: 16217130 doi: 10.1385/ENDO:27:2:169
Medeiros C. Carvalhedo, de Bruin PF, Lopes LA, Magalhães MC, de Lourdes Seabra M, de Bruin VM (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neurol. 254(4):459–464
Mohammadi S, Rastmanesh R, Jahangir F, Amiri Z, Djafarian K, Mohsenpour MA, Hassanipour S, Ghaffarian-Bahraman A (2021) Melatonin supplementation and anthropometric indices: A randomized double-blind controlled clinical trial. BioMed Research International. 2021
Morris CJ, Aeschbach D, Scheer FA (2012) Circadian system, sleep and endocrinology. Mol Cell Endocrinol 349(1):91–104
pubmed: 21939733 doi: 10.1016/j.mce.2011.09.003
Niwa F, Kuriyama N, Nakagawa M, Imanishi J (2011) Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson’s disease. Auton Neurosci 165(2):195–200
pubmed: 21871844 doi: 10.1016/j.autneu.2011.07.010
Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, Serrano GE, Beach TG, Adler CH, Cuenca N (2020) Dopaminergic retinal cell loss and visual dysfunction in Parkinson Disease. Ann Neurol 88(5):893–906. https://doi.org/10.1002/ana.25897
doi: 10.1002/ana.25897 pubmed: 32881029 pmcid: 10005860
Palagini L, Manni R, Aguglia E, Amore M, Brugnoli R, Bioulac S, Bourgin P, Micoulaud Franchi J-A, Girardi P, Grassi L (2021) International expert opinions and recommendations on the use of melatonin in the treatment of insomnia and circadian sleep disturbances in adult neuropsychiatric disorders. Front Psychiatry 12:688890
pubmed: 34177671 pmcid: 8222620 doi: 10.3389/fpsyt.2021.688890
Park J-H, Kim D-H, Kwon D-Y, Choi M, Kim S, Jung J-H, Han K, Park Y-G (2019) Trends in the incidence and prevalence of Parkinson’s disease in Korea: a nationwide, population-based study. BMC Geriatr 19:1–10
doi: 10.1186/s12877-019-1332-7
Peuhkuri K, Sihvola N, Korpela R (2012) Dietary factors and fluctuating levels of melatonin. Food Nutr Res 56(1):17252
doi: 10.3402/fnr.v56i0.17252
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nat Reviews Disease Primers 3(1):1–21
Saha S, Singh KM, Gupta BBP (2019) Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: similarities and differences. Gen Comp Endocrinol 279:27–34
pubmed: 30026020 doi: 10.1016/j.ygcen.2018.07.010
Scarinci E, Tropea A, Notaristefano G, Arena V, Alesiani O, Fabozzi S, Lanzone A, Apa R (2019) Hormone of darkness and human reproductive process: direct regulatory role of melatonin in human corpus luteum. J Endocrinol Investig 42:1191–1197
doi: 10.1007/s40618-019-01036-3
Selmaoui B, Touitou Y (2003) Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci 73(26):3339–3349
pubmed: 14572876 doi: 10.1016/j.lfs.2003.05.007
Sharabi Y, Vatine GD, Ashkenazi A (2021) Parkinson’s disease outside the brain: targeting the autonomic nervous system. Lancet Neurol 20(10):868–876
pubmed: 34536407 doi: 10.1016/S1474-4422(21)00219-2
Singh M, Jadhav HR (2014) Melatonin: functions and ligands. Drug Discovery Today 19(9):1410–1418
pubmed: 24792719 doi: 10.1016/j.drudis.2014.04.014
Stauch B, Johansson LC, Cherezov V (2020) Structural insights into melatonin receptors. FEBS J 287(8):1496–1510
pubmed: 31693784 doi: 10.1111/febs.15128
Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect Med 2(2):a009399
doi: 10.1101/cshperspect.a009399
Stefanović B, Spasojević N, Jovanović P, Ferizović H, Dronjak S (2018) Melatonin modulate the expression of α1-and β2-adrenoceptors in the hippocampus of rats subjected to unpredictable chronic mild stress. Bratislava Med J 119(7):429–433
doi: 10.4149/BLL_2018_078
Stein RM, Kang HJ, McCorvy JD, Glatfelter GC, Jones AJ, Che T, Slocum S, Huang X-P, Savych O, Moroz YS (2020) Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579(7800):609–614
pubmed: 32040955 pmcid: 7134359 doi: 10.1038/s41586-020-2027-0
Tamtaji OR, Reiter RJ, Alipoor R, Dadgostar E, Kouchaki E, Asemi Z (2020) Melatonin and Parkinson disease: current status and future perspectives for molecular mechanisms. Cell Mol Neurobiol 40:15–23
pubmed: 31388798 doi: 10.1007/s10571-019-00720-5
Tan D-X, Manchester LC, Reiter RJ (2016) CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med Hypotheses 86:3–9
pubmed: 26804589 doi: 10.1016/j.mehy.2015.11.018
Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 15(3):434–443
pubmed: 28503116 pmcid: 5405617 doi: 10.2174/1570159X14666161228122115
Vekony A, BACTERIAL MENINGITIS DISEASE AND THE MELATONIN MOLECULE (2021) Romanian Archives Microbiol Immunol 80(2):199–199
Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, Rademaker AW, Simuni T, Zadikoff C, Zee PC (2014) Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 71(4):463–469
pubmed: 24566763 pmcid: 4078989 doi: 10.1001/jamaneurol.2013.6239
Wahl S, Engelhardt M, Schaupp P, Lappe C, Ivanov IV (2019) The inner clock—blue light sets the human rhythm. J Biophotonics 12(12):e201900102
pubmed: 31433569 pmcid: 7065627 doi: 10.1002/jbio.201900102
Wakabayashi K (2020) Where and how alpha-synuclein pathology spreads in Parkinson’s disease. Neuropathology 40(5):415–425
pubmed: 32750743 doi: 10.1111/neup.12691
Wang S, Yuan Y-H, Chen N-H, Wang H-B (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 67:458–464
pubmed: 30594776 doi: 10.1016/j.intimp.2018.12.019
Willis GL, Freelance CB (2017) The effect of directed photic stimulation of the pineal on experimental Parkinson’s disease. Physiol Behav 182:1–9
pubmed: 28919247 doi: 10.1016/j.physbeh.2017.09.014
Won E, Na K-S, Kim Y-K (2022) Associations between melatonin, neuroinflammation, and brain alterations in depression. Int J Mol Sci 23(1):305
doi: 10.3390/ijms23010305
Yildirim FB, Ozsoy O, Tanriover G, Kaya Y, Ogut E, Gemici B, Dilmac S, Ozkan A, Agar A, Aslan M (2014) Mechanism of the beneficial effect of melatonin in experimental Parkinson’s disease. Neurochem Int 79:1–11
pubmed: 25263280 doi: 10.1016/j.neuint.2014.09.005
Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175(16):3190–3199
pubmed: 29318587 pmcid: 6057895 doi: 10.1111/bph.14116

Auteurs

Areej Turkistani (A)

Department of Pharmacology and Toxicology, College of Medicine, Taif University, Taif, 21944, Kingdom of Saudi Arabia.

Hayder M Al-Kuraishy (HM)

Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.

Ali I Al-Gareeb (AI)

Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.

Walaa A Negm (WA)

Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt. walaa.negm@pharm.tanta.edu.eg.

Mostafa M Bahaa (MM)

Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.

Mostafa E Metawee (ME)

Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
Department of Histology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia.

Gaber El-Saber Batiha (G)

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, P.O. Box 14132, AlBeheira, Damanhour, Egypt. dr_gaber_batiha@vetmed.dmu.edu.eg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH