The extensive m
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
28
09
2023
accepted:
06
08
2024
medline:
24
8
2024
pubmed:
24
8
2024
entrez:
23
8
2024
Statut:
epublish
Résumé
RNAs are often modified to invoke new activities. While many modifications are limited in frequency, restricted to non-coding RNAs, or present only in select organisms, 5-methylcytidine (m
Identifiants
pubmed: 39179532
doi: 10.1038/s41467-024-51410-w
pii: 10.1038/s41467-024-51410-w
doi:
Substances chimiques
Methyltransferases
EC 2.1.1.-
Cytidine
5CSZ8459RP
5-methylcytidine
TL9PB228DC
RNA, Archaeal
0
Archaeal Proteins
0
RNA, Ribosomal
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7272Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
ID : R35-GM143963
Organisme : National Science Foundation (NSF)
ID : 2022065
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : GM132057
Informations de copyright
© 2024. The Author(s).
Références
Thomas, J. M., Batista, P. J. & Meier, J. L. Metabolic regulation of the epitranscriptome. ACS Chem. Biol. 14, 316–324 (2019).
pubmed: 30653309
doi: 10.1021/acschembio.8b00951
Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).
pubmed: 32555463
pmcid: 8130014
doi: 10.1038/s41586-020-2418-2
Birk, M. A. et al. Temperature-dependent RNA editing in octopus extensively recodes the neural proteome. Cell 186, 2544–2555.e13 (2023).
pubmed: 37295402
pmcid: 10445230
doi: 10.1016/j.cell.2023.05.004
Zhang, C. & Jia, G. Reversible RNA modification N
doi: 10.1016/j.gpb.2018.03.003
Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 605, 372–379 (2022).
pubmed: 35477761
pmcid: 9095486
doi: 10.1038/s41586-022-04677-2
Chikne, V. et al. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei. Sci. Rep. 6, 25296 (2016).
pubmed: 27142987
pmcid: 4855143
doi: 10.1038/srep25296
He, Y. et al. Novel insights into the role of 5-Methylcytosine RNA methylation in human abdominal aortic aneurysm. Front. Biosci. 26, 1147–1165 (2021).
doi: 10.52586/5016
Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).
pubmed: 29364877
doi: 10.1038/nature25434
Gokhale, N. S. et al. Altered m
pubmed: 31810760
doi: 10.1016/j.molcel.2019.11.007
Gokhale, N. S. et al. N6-Methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20, 654–665 (2016).
pubmed: 27773535
pmcid: 5123813
doi: 10.1016/j.chom.2016.09.015
Șelaru, A., Costache, M. & Dinescu, S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol. 18, 51–60 (2021).
pubmed: 34582322
pmcid: 8677044
doi: 10.1080/15476286.2021.1985348
Heck, A. M. & Wilusz, C. J. Small changes, big implications: the impact of m
pubmed: 31325527
pmcid: 6742438
doi: 10.1016/j.bbagrm.2019.07.003
Zhang, M. et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS ONE 10, e0133788 (2015).
pubmed: 26218273
pmcid: 4517749
doi: 10.1371/journal.pone.0133788
Liu, N. et al. N
pubmed: 25719671
pmcid: 4355918
doi: 10.1038/nature14234
Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202.e11 (2019).
pubmed: 31399345
doi: 10.1016/j.molcel.2019.06.033
Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e24 (2018).
pubmed: 30449621
pmcid: 6295233
doi: 10.1016/j.cell.2018.10.030
Du, H. et al. YTHDF2 destabilizes m
pubmed: 27558897
pmcid: 5007331
doi: 10.1038/ncomms12626
Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).
pubmed: 24284625
doi: 10.1038/nature12730
Yang, Y., Hsu, P. J., Chen, Y.-S. & Yang, Y.-G. Dynamic transcriptomic m
pubmed: 29789545
pmcid: 5993786
doi: 10.1038/s41422-018-0040-8
Navarro, I. C. et al. Identification of putative reader proteins of 5-methylcytosine and its derivatives in Caenorhabditis elegans RNA. Wellcome Open Res. 7, 282 (2022).
pubmed: 37475875
pmcid: 10354459
doi: 10.12688/wellcomeopenres.17893.1
Yang, X. et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m
pubmed: 28418038
pmcid: 5594206
doi: 10.1038/cr.2017.55
Yang, L. et al. m
pubmed: 31327714
doi: 10.1016/j.cub.2019.06.042
Xiao, W. et al. Nuclear m
pubmed: 26876937
doi: 10.1016/j.molcel.2016.01.012
Vallecillo-Viejo, I. C. et al. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res. 48, 3999–4012 (2020).
pubmed: 32201888
pmcid: 7192619
doi: 10.1093/nar/gkaa172
Schumann, U. et al. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol. 18, 40 (2020).
pubmed: 32293435
pmcid: 7158060
doi: 10.1186/s12915-020-00769-5
Li, A. et al. Cytoplasmic m
pubmed: 28106076
pmcid: 5339832
doi: 10.1038/cr.2017.10
Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).
pubmed: 28106072
pmcid: 5339834
doi: 10.1038/cr.2017.15
Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).
pubmed: 32210357
pmcid: 7156397
doi: 10.1038/s12276-020-0407-z
Dominissini, D. & Rechavi, G. 5-methylcytosine mediates nuclear export of mRNA. Cell Res. 27, 717–719 (2017).
pubmed: 28534483
pmcid: 5518879
doi: 10.1038/cr.2017.73
Bohnsack, M. T. & Sloan, K. E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci. 75, 241–260 (2018).
pubmed: 28752201
doi: 10.1007/s00018-017-2598-6
Larkin, R. M. RNA editing implicated in chloroplast-to-nucleus communication. Proc. Natl Acad. Sci. 116, 9701–9703 (2019).
pubmed: 31064881
pmcid: 6525527
doi: 10.1073/pnas.1905566116
Brachova, P. et al. Inosine RNA modifications are enriched at the codon wobble position in mouse oocytes and eggs†. Biol. Reprod. 101, 938–949 (2019).
pubmed: 31346607
pmcid: 6877758
doi: 10.1093/biolre/ioz130
Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).
pubmed: 26721680
doi: 10.1126/science.aad7977
Kiani, J. et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 9, e1003498 (2013).
pubmed: 23717211
pmcid: 3662642
doi: 10.1371/journal.pgen.1003498
Nelson, V. R., Heaney, J. D., Tesar, P. J., Davidson, N. O. & Nadeau, J. H. Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc. Natl Acad. Sci. USA 109, E2766–E2773 (2012).
pubmed: 22923694
pmcid: 3478648
doi: 10.1073/pnas.1207169109
Ontiveros, R. J., Stoute, J. & Liu, K. F. The chemical diversity of RNA modifications. Biochem. J. 476, 1227–1245 (2019).
pubmed: 31028151
doi: 10.1042/BCJ20180445
Höfer, K. & Jäschke, A. Epitranscriptomics: RNA modifications in bacteria and archaea. Microbiol. Spectr. 6, https://doi.org/10.1128/microbiolspec.RWR-0015-2017 (2018).
Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).
pubmed: 28855326
pmcid: 5688997
doi: 10.1261/rna.063503.117
Wilkinson, E., Cui, Y.-H. & He, Y.-Y. Roles of RNA modifications in diverse cellular functions. Front. Cell Dev. Biol. 10, 828683 (2022).
pubmed: 35350378
pmcid: 8957929
doi: 10.3389/fcell.2022.828683
Schaefer, M., Kapoor, U. & Jantsch, M. F. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. 7, 170077 (2017).
pubmed: 28566301
pmcid: 5451548
doi: 10.1098/rsob.170077
Orita, I. et al. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res. 47, 1964–1976 (2019).
pubmed: 30605516
pmcid: 6393311
doi: 10.1093/nar/gky1313
Shigi, N. et al. Temperature-dependent biosynthesis of 2-thioribothymidine of Thermus thermophilus tRNA. J. Biol. Chem. 281, 2104–2113 (2006).
pubmed: 16317006
doi: 10.1074/jbc.M510771200
Droogmans, L. et al. Cloning and characterization of tRNA (m
pubmed: 12682365
pmcid: 153742
doi: 10.1093/nar/gkg314
Hirata, A. et al. Distinct modified nucleosides in tRNATrp from the hyperthermophilic archaeon Thermococcus kodakarensis and requirement of tRNA m
Tomikawa, C., Yokogawa, T., Kanai, T. & Hori, H. N7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network. Nucleic Acids Res. 38, 942–957 (2010).
pubmed: 19934251
doi: 10.1093/nar/gkp1059
Kowalak, J. A., Dalluge, J. J., McCloskey, J. A. & Stetter, K. O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33, 7869–7876 (1994).
pubmed: 7516708
doi: 10.1021/bi00191a014
Turner, B. et al. Archaeosine modification of archaeal tRNA: role in structural stabilization. J. Bacteriol. 202, e00748–19 (2020).
pubmed: 32041795
pmcid: 7099136
doi: 10.1128/JB.00748-19
Dennis, P. P., Tripp, V., Lui, L., Lowe, T. & Randau, L. C/D box sRNA-guided 2’-O-methylation patterns of archaeal rRNA molecules. BMC Genomics 16, 632 (2015).
pubmed: 26296872
pmcid: 4644070
doi: 10.1186/s12864-015-1839-z
Legrand, C. et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 27, 1589–1596 (2017).
pubmed: 28684555
pmcid: 5580717
doi: 10.1101/gr.210666.116
Lorenz, C., Lünse, C. E. & Mörl, M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules 7, 35 (2017).
pubmed: 28375166
pmcid: 5485724
doi: 10.3390/biom7020035
Trixl, L. & Lusser, A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip. Rev. RNA 10, e1510 (2019).
pubmed: 30311405
doi: 10.1002/wrna.1510
Jäger, D., Förstner, K. U., Sharma, C. M., Santangelo, T. J. & Reeve, J. N. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15, 684 (2014).
pubmed: 25127548
pmcid: 4247193
doi: 10.1186/1471-2164-15-684
Amort, T. et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 18, 1 (2017).
pubmed: 28077169
pmcid: 5225599
doi: 10.1186/s13059-016-1139-1
Sibbritt, T., Patel, H. R. & Preiss, T. Mapping and significance of the mRNA methylome. Wiley Interdiscip. Rev. RNA 4, 397–422 (2013).
pubmed: 23681756
doi: 10.1002/wrna.1166
Liu, M. et al. 5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc. Natl Acad. Sci. USA 119, e2110713119 (2022).
Gehring, A. M., Sanders, T. J. & Santangelo, T. J. Markerless gene editing in the hyperthermophilic archaeon Thermococcus kodakarensis. Bio Protoc. 7, e2604 (2017).
pubmed: 29276725
pmcid: 5739306
doi: 10.21769/BioProtoc.2604
Spaans, S. K., van der Oost, J. & Kengen, S. W. M. The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 19, 741–750 (2015).
pubmed: 25952670
pmcid: 4502288
doi: 10.1007/s00792-015-0750-5
Sergeeva, O. V., Bogdanov, A. A. & Sergiev, P. V. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 117, 110–118 (2015).
pubmed: 25511423
doi: 10.1016/j.biochi.2014.11.019
Sharma, S. & Entian, K.-D. Chemical modifications of ribosomal RNA. Methods Mol. Biol. 2533, 149–166 (2022).
pubmed: 35796987
pmcid: 9761533
doi: 10.1007/978-1-0716-2501-9_9
Motorin, Y. & Grosjean, H. Multisite-specific tRNA:m
pubmed: 10445884
pmcid: 1369833
doi: 10.1017/S1355838299982201
Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. & Sorek, R. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m
pubmed: 23825970
pmcid: 3694839
doi: 10.1371/journal.pgen.1003602
Song, Y. et al. Comprehensive analysis of key m
pubmed: 36276976
pmcid: 9582283
doi: 10.3389/fgene.2022.1015879
Cui, X. et al. 5-Methylcytosine RNA methylation in Arabidopsis Thaliana. Mol. Plant 10, 1387–1399 (2017).
pubmed: 28965832
doi: 10.1016/j.molp.2017.09.013
Jian, H. et al. Alteration of mRNA 5-methylcytosine modification in neurons after OGD/R and potential roles in cell stress response and apoptosis. Front. Genet. 12, 633681 (2021).
pubmed: 33613646
pmcid: 7887326
doi: 10.3389/fgene.2021.633681
Wnuk, M., Slipek, P., Dziedzic, M. & Lewinska, A. The roles of host 5-methylcytosine RNA methyltransferases during viral infections. Int. J. Mol. Sci. 21, 8176 (2020).
pubmed: 33142933
pmcid: 7663479
doi: 10.3390/ijms21218176
Lin, Y. et al. Overview of distinct 5-methylcytosine profiles of messenger RNA in normal and knock-down NSUN2 colorectal cancer cells. Front. Genet. 14, 1121063 (2023).
pubmed: 37168511
pmcid: 10166136
doi: 10.3389/fgene.2023.1121063
He, Y., Zhang, Q., Zheng, Q., Yu, X. & Guo, W. Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma. Am. J. Transl. Res. 12, 5719–5729 (2020).
pubmed: 33042451
pmcid: 7540146
Bataglia, L., Simões, Z. L. P. & Nunes, F. M. F. Transcriptional expression of m
pubmed: 36105348
pmcid: 9467440
doi: 10.3389/fcell.2022.921503
Navarro, I. C. et al. Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans. EMBO J. 40, e105496 (2021).
pubmed: 33283887
doi: 10.15252/embj.2020105496
David, R. et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell 29, 445–460 (2017).
pubmed: 28062751
pmcid: 5385953
doi: 10.1105/tpc.16.00751
Tang, Y. et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell 53, 272–286.e7 (2020).
pubmed: 32275888
doi: 10.1016/j.devcel.2020.03.009
Xue, S. et al. Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem. Biophys. Res. Commun. 520, 60–66 (2019).
pubmed: 31570165
doi: 10.1016/j.bbrc.2019.09.098
Wang, N., Tang, H., Wang, X., Wang, W. & Feng, J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem. Biophys. Res. Commun. 493, 94–99 (2017).
pubmed: 28919411
doi: 10.1016/j.bbrc.2017.09.069
Bohnsack, K. E., Höbartner, C. & Bohnsack, M. T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes 10, 102 (2019).
pubmed: 30704115
pmcid: 6409601
doi: 10.3390/genes10020102
Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).
pubmed: 27306184
pmcid: 5040503
doi: 10.1038/nature18282
Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).
pubmed: 31358969
doi: 10.1038/s41556-019-0361-y
Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).
pubmed: 31061524
doi: 10.1038/s41594-019-0218-x
Scott, K. A., Williams, S. A. & Santangelo, T. J. Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression. Methods Enzymol. 659, 243–273 (2021).
pubmed: 34752288
pmcid: 8878339
doi: 10.1016/bs.mie.2021.06.014
Hileman, T. H. & Santangelo, T. J. Genetics techniques for Thermococcus kodakarensis. Front. Microbiol. 3, 195 (2012).
pubmed: 22701112
pmcid: 3370424
doi: 10.3389/fmicb.2012.00195
Morlan, J. D., Qu, K. & Sinicropi, D. V. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS ONE 7, e42882 (2012).
pubmed: 22900061
pmcid: 3416766
doi: 10.1371/journal.pone.0042882
Wein, S. et al. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat. Commun. 11, 926 (2020).
pubmed: 32066737
pmcid: 7026122
doi: 10.1038/s41467-020-14665-7
Mi, H. & Thomas, P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123–140 (2009).
pubmed: 19597783
pmcid: 6608593
doi: 10.1007/978-1-60761-175-2_7
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).
pubmed: 18424795
pmcid: 2447809
doi: 10.1093/nar/gkn188