The extensive m


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 28 09 2023
accepted: 06 08 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: epublish

Résumé

RNAs are often modified to invoke new activities. While many modifications are limited in frequency, restricted to non-coding RNAs, or present only in select organisms, 5-methylcytidine (m

Identifiants

pubmed: 39179532
doi: 10.1038/s41467-024-51410-w
pii: 10.1038/s41467-024-51410-w
doi:

Substances chimiques

Methyltransferases EC 2.1.1.-
Cytidine 5CSZ8459RP
5-methylcytidine TL9PB228DC
RNA, Archaeal 0
Archaeal Proteins 0
RNA, Ribosomal 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7272

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
ID : R35-GM143963
Organisme : National Science Foundation (NSF)
ID : 2022065
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : GM132057

Informations de copyright

© 2024. The Author(s).

Références

Thomas, J. M., Batista, P. J. & Meier, J. L. Metabolic regulation of the epitranscriptome. ACS Chem. Biol. 14, 316–324 (2019).
pubmed: 30653309 doi: 10.1021/acschembio.8b00951
Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).
pubmed: 32555463 pmcid: 8130014 doi: 10.1038/s41586-020-2418-2
Birk, M. A. et al. Temperature-dependent RNA editing in octopus extensively recodes the neural proteome. Cell 186, 2544–2555.e13 (2023).
pubmed: 37295402 pmcid: 10445230 doi: 10.1016/j.cell.2023.05.004
Zhang, C. & Jia, G. Reversible RNA modification N
doi: 10.1016/j.gpb.2018.03.003
Ohira, T. et al. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 605, 372–379 (2022).
pubmed: 35477761 pmcid: 9095486 doi: 10.1038/s41586-022-04677-2
Chikne, V. et al. A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei. Sci. Rep. 6, 25296 (2016).
pubmed: 27142987 pmcid: 4855143 doi: 10.1038/srep25296
He, Y. et al. Novel insights into the role of 5-Methylcytosine RNA methylation in human abdominal aortic aneurysm. Front. Biosci. 26, 1147–1165 (2021).
doi: 10.52586/5016
Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).
pubmed: 29364877 doi: 10.1038/nature25434
Gokhale, N. S. et al. Altered m
pubmed: 31810760 doi: 10.1016/j.molcel.2019.11.007
Gokhale, N. S. et al. N6-Methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20, 654–665 (2016).
pubmed: 27773535 pmcid: 5123813 doi: 10.1016/j.chom.2016.09.015
Șelaru, A., Costache, M. & Dinescu, S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol. 18, 51–60 (2021).
pubmed: 34582322 pmcid: 8677044 doi: 10.1080/15476286.2021.1985348
Heck, A. M. & Wilusz, C. J. Small changes, big implications: the impact of m
pubmed: 31325527 pmcid: 6742438 doi: 10.1016/j.bbagrm.2019.07.003
Zhang, M. et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS ONE 10, e0133788 (2015).
pubmed: 26218273 pmcid: 4517749 doi: 10.1371/journal.pone.0133788
Liu, N. et al. N
pubmed: 25719671 pmcid: 4355918 doi: 10.1038/nature14234
Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202.e11 (2019).
pubmed: 31399345 doi: 10.1016/j.molcel.2019.06.033
Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e24 (2018).
pubmed: 30449621 pmcid: 6295233 doi: 10.1016/j.cell.2018.10.030
Du, H. et al. YTHDF2 destabilizes m
pubmed: 27558897 pmcid: 5007331 doi: 10.1038/ncomms12626
Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).
pubmed: 24284625 doi: 10.1038/nature12730
Yang, Y., Hsu, P. J., Chen, Y.-S. & Yang, Y.-G. Dynamic transcriptomic m
pubmed: 29789545 pmcid: 5993786 doi: 10.1038/s41422-018-0040-8
Navarro, I. C. et al. Identification of putative reader proteins of 5-methylcytosine and its derivatives in Caenorhabditis elegans RNA. Wellcome Open Res. 7, 282 (2022).
pubmed: 37475875 pmcid: 10354459 doi: 10.12688/wellcomeopenres.17893.1
Yang, X. et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m
pubmed: 28418038 pmcid: 5594206 doi: 10.1038/cr.2017.55
Yang, L. et al. m
pubmed: 31327714 doi: 10.1016/j.cub.2019.06.042
Xiao, W. et al. Nuclear m
pubmed: 26876937 doi: 10.1016/j.molcel.2016.01.012
Vallecillo-Viejo, I. C. et al. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res. 48, 3999–4012 (2020).
pubmed: 32201888 pmcid: 7192619 doi: 10.1093/nar/gkaa172
Schumann, U. et al. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol. 18, 40 (2020).
pubmed: 32293435 pmcid: 7158060 doi: 10.1186/s12915-020-00769-5
Li, A. et al. Cytoplasmic m
pubmed: 28106076 pmcid: 5339832 doi: 10.1038/cr.2017.10
Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).
pubmed: 28106072 pmcid: 5339834 doi: 10.1038/cr.2017.15
Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).
pubmed: 32210357 pmcid: 7156397 doi: 10.1038/s12276-020-0407-z
Dominissini, D. & Rechavi, G. 5-methylcytosine mediates nuclear export of mRNA. Cell Res. 27, 717–719 (2017).
pubmed: 28534483 pmcid: 5518879 doi: 10.1038/cr.2017.73
Bohnsack, M. T. & Sloan, K. E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci. 75, 241–260 (2018).
pubmed: 28752201 doi: 10.1007/s00018-017-2598-6
Larkin, R. M. RNA editing implicated in chloroplast-to-nucleus communication. Proc. Natl Acad. Sci. 116, 9701–9703 (2019).
pubmed: 31064881 pmcid: 6525527 doi: 10.1073/pnas.1905566116
Brachova, P. et al. Inosine RNA modifications are enriched at the codon wobble position in mouse oocytes and eggs†. Biol. Reprod. 101, 938–949 (2019).
pubmed: 31346607 pmcid: 6877758 doi: 10.1093/biolre/ioz130
Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).
pubmed: 26721680 doi: 10.1126/science.aad7977
Kiani, J. et al. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet. 9, e1003498 (2013).
pubmed: 23717211 pmcid: 3662642 doi: 10.1371/journal.pgen.1003498
Nelson, V. R., Heaney, J. D., Tesar, P. J., Davidson, N. O. & Nadeau, J. H. Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc. Natl Acad. Sci. USA 109, E2766–E2773 (2012).
pubmed: 22923694 pmcid: 3478648 doi: 10.1073/pnas.1207169109
Ontiveros, R. J., Stoute, J. & Liu, K. F. The chemical diversity of RNA modifications. Biochem. J. 476, 1227–1245 (2019).
pubmed: 31028151 doi: 10.1042/BCJ20180445
Höfer, K. & Jäschke, A. Epitranscriptomics: RNA modifications in bacteria and archaea. Microbiol. Spectr. 6, https://doi.org/10.1128/microbiolspec.RWR-0015-2017 (2018).
Jonkhout, N. et al. The RNA modification landscape in human disease. RNA 23, 1754–1769 (2017).
pubmed: 28855326 pmcid: 5688997 doi: 10.1261/rna.063503.117
Wilkinson, E., Cui, Y.-H. & He, Y.-Y. Roles of RNA modifications in diverse cellular functions. Front. Cell Dev. Biol. 10, 828683 (2022).
pubmed: 35350378 pmcid: 8957929 doi: 10.3389/fcell.2022.828683
Schaefer, M., Kapoor, U. & Jantsch, M. F. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. 7, 170077 (2017).
pubmed: 28566301 pmcid: 5451548 doi: 10.1098/rsob.170077
Orita, I. et al. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res. 47, 1964–1976 (2019).
pubmed: 30605516 pmcid: 6393311 doi: 10.1093/nar/gky1313
Shigi, N. et al. Temperature-dependent biosynthesis of 2-thioribothymidine of Thermus thermophilus tRNA. J. Biol. Chem. 281, 2104–2113 (2006).
pubmed: 16317006 doi: 10.1074/jbc.M510771200
Droogmans, L. et al. Cloning and characterization of tRNA (m
pubmed: 12682365 pmcid: 153742 doi: 10.1093/nar/gkg314
Hirata, A. et al. Distinct modified nucleosides in tRNATrp from the hyperthermophilic archaeon Thermococcus kodakarensis and requirement of tRNA m
Tomikawa, C., Yokogawa, T., Kanai, T. & Hori, H. N7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network. Nucleic Acids Res. 38, 942–957 (2010).
pubmed: 19934251 doi: 10.1093/nar/gkp1059
Kowalak, J. A., Dalluge, J. J., McCloskey, J. A. & Stetter, K. O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33, 7869–7876 (1994).
pubmed: 7516708 doi: 10.1021/bi00191a014
Turner, B. et al. Archaeosine modification of archaeal tRNA: role in structural stabilization. J. Bacteriol. 202, e00748–19 (2020).
pubmed: 32041795 pmcid: 7099136 doi: 10.1128/JB.00748-19
Dennis, P. P., Tripp, V., Lui, L., Lowe, T. & Randau, L. C/D box sRNA-guided 2’-O-methylation patterns of archaeal rRNA molecules. BMC Genomics 16, 632 (2015).
pubmed: 26296872 pmcid: 4644070 doi: 10.1186/s12864-015-1839-z
Legrand, C. et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 27, 1589–1596 (2017).
pubmed: 28684555 pmcid: 5580717 doi: 10.1101/gr.210666.116
Lorenz, C., Lünse, C. E. & Mörl, M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules 7, 35 (2017).
pubmed: 28375166 pmcid: 5485724 doi: 10.3390/biom7020035
Trixl, L. & Lusser, A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip. Rev. RNA 10, e1510 (2019).
pubmed: 30311405 doi: 10.1002/wrna.1510
Jäger, D., Förstner, K. U., Sharma, C. M., Santangelo, T. J. & Reeve, J. N. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15, 684 (2014).
pubmed: 25127548 pmcid: 4247193 doi: 10.1186/1471-2164-15-684
Amort, T. et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 18, 1 (2017).
pubmed: 28077169 pmcid: 5225599 doi: 10.1186/s13059-016-1139-1
Sibbritt, T., Patel, H. R. & Preiss, T. Mapping and significance of the mRNA methylome. Wiley Interdiscip. Rev. RNA 4, 397–422 (2013).
pubmed: 23681756 doi: 10.1002/wrna.1166
Liu, M. et al. 5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc. Natl Acad. Sci. USA 119, e2110713119 (2022).
Gehring, A. M., Sanders, T. J. & Santangelo, T. J. Markerless gene editing in the hyperthermophilic archaeon Thermococcus kodakarensis. Bio Protoc. 7, e2604 (2017).
pubmed: 29276725 pmcid: 5739306 doi: 10.21769/BioProtoc.2604
Spaans, S. K., van der Oost, J. & Kengen, S. W. M. The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 19, 741–750 (2015).
pubmed: 25952670 pmcid: 4502288 doi: 10.1007/s00792-015-0750-5
Sergeeva, O. V., Bogdanov, A. A. & Sergiev, P. V. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 117, 110–118 (2015).
pubmed: 25511423 doi: 10.1016/j.biochi.2014.11.019
Sharma, S. & Entian, K.-D. Chemical modifications of ribosomal RNA. Methods Mol. Biol. 2533, 149–166 (2022).
pubmed: 35796987 pmcid: 9761533 doi: 10.1007/978-1-0716-2501-9_9
Motorin, Y. & Grosjean, H. Multisite-specific tRNA:m
pubmed: 10445884 pmcid: 1369833 doi: 10.1017/S1355838299982201
Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. & Sorek, R. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m
pubmed: 23825970 pmcid: 3694839 doi: 10.1371/journal.pgen.1003602
Song, Y. et al. Comprehensive analysis of key m
pubmed: 36276976 pmcid: 9582283 doi: 10.3389/fgene.2022.1015879
Cui, X. et al. 5-Methylcytosine RNA methylation in Arabidopsis Thaliana. Mol. Plant 10, 1387–1399 (2017).
pubmed: 28965832 doi: 10.1016/j.molp.2017.09.013
Jian, H. et al. Alteration of mRNA 5-methylcytosine modification in neurons after OGD/R and potential roles in cell stress response and apoptosis. Front. Genet. 12, 633681 (2021).
pubmed: 33613646 pmcid: 7887326 doi: 10.3389/fgene.2021.633681
Wnuk, M., Slipek, P., Dziedzic, M. & Lewinska, A. The roles of host 5-methylcytosine RNA methyltransferases during viral infections. Int. J. Mol. Sci. 21, 8176 (2020).
pubmed: 33142933 pmcid: 7663479 doi: 10.3390/ijms21218176
Lin, Y. et al. Overview of distinct 5-methylcytosine profiles of messenger RNA in normal and knock-down NSUN2 colorectal cancer cells. Front. Genet. 14, 1121063 (2023).
pubmed: 37168511 pmcid: 10166136 doi: 10.3389/fgene.2023.1121063
He, Y., Zhang, Q., Zheng, Q., Yu, X. & Guo, W. Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma. Am. J. Transl. Res. 12, 5719–5729 (2020).
pubmed: 33042451 pmcid: 7540146
Bataglia, L., Simões, Z. L. P. & Nunes, F. M. F. Transcriptional expression of m
pubmed: 36105348 pmcid: 9467440 doi: 10.3389/fcell.2022.921503
Navarro, I. C. et al. Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans. EMBO J. 40, e105496 (2021).
pubmed: 33283887 doi: 10.15252/embj.2020105496
David, R. et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell 29, 445–460 (2017).
pubmed: 28062751 pmcid: 5385953 doi: 10.1105/tpc.16.00751
Tang, Y. et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell 53, 272–286.e7 (2020).
pubmed: 32275888 doi: 10.1016/j.devcel.2020.03.009
Xue, S. et al. Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem. Biophys. Res. Commun. 520, 60–66 (2019).
pubmed: 31570165 doi: 10.1016/j.bbrc.2019.09.098
Wang, N., Tang, H., Wang, X., Wang, W. & Feng, J. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem. Biophys. Res. Commun. 493, 94–99 (2017).
pubmed: 28919411 doi: 10.1016/j.bbrc.2017.09.069
Bohnsack, K. E., Höbartner, C. & Bohnsack, M. T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes 10, 102 (2019).
pubmed: 30704115 pmcid: 6409601 doi: 10.3390/genes10020102
Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).
pubmed: 27306184 pmcid: 5040503 doi: 10.1038/nature18282
Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).
pubmed: 31358969 doi: 10.1038/s41556-019-0361-y
Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).
pubmed: 31061524 doi: 10.1038/s41594-019-0218-x
Scott, K. A., Williams, S. A. & Santangelo, T. J. Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression. Methods Enzymol. 659, 243–273 (2021).
pubmed: 34752288 pmcid: 8878339 doi: 10.1016/bs.mie.2021.06.014
Hileman, T. H. & Santangelo, T. J. Genetics techniques for Thermococcus kodakarensis. Front. Microbiol. 3, 195 (2012).
pubmed: 22701112 pmcid: 3370424 doi: 10.3389/fmicb.2012.00195
Morlan, J. D., Qu, K. & Sinicropi, D. V. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS ONE 7, e42882 (2012).
pubmed: 22900061 pmcid: 3416766 doi: 10.1371/journal.pone.0042882
Wein, S. et al. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat. Commun. 11, 926 (2020).
pubmed: 32066737 pmcid: 7026122 doi: 10.1038/s41467-020-14665-7
Mi, H. & Thomas, P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123–140 (2009).
pubmed: 19597783 pmcid: 6608593 doi: 10.1007/978-1-60761-175-2_7
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).
pubmed: 18424795 pmcid: 2447809 doi: 10.1093/nar/gkn188

Auteurs

Kristin A Fluke (KA)

Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.

Ryan T Fuchs (RT)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Yueh-Lin Tsai (YL)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Victoria Talbott (V)

Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.

Liam Elkins (L)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Hallie P Febvre (HP)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Nan Dai (N)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Eric J Wolf (EJ)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Brett W Burkhart (BW)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Jackson Schiltz (J)

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.

G Brett Robb (G)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Ivan R Corrêa (IR)

New England Biolabs Inc., Beverly, MA, 01915, USA.

Thomas J Santangelo (TJ)

Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA. thomas.santangelo@colostate.edu.
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA. thomas.santangelo@colostate.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH