Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
23 Aug 2024
Historique:
received: 09 02 2024
accepted: 12 08 2024
revised: 26 07 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: aheadofprint

Résumé

Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [

Identifiants

pubmed: 39179904
doi: 10.1038/s41380-024-02696-1
pii: 10.1038/s41380-024-02696-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Vienna Science and Technology Fund (Wiener Wissenschafts-, Forschungs- und Technologiefonds)
ID : DOI: 10.47379/CS18039
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : DOI: 10.55776/KLI1006
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : DOI: 10.55776/KLI610

Informations de copyright

© 2024. The Author(s).

Références

Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction: an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74:387–98.
pubmed: 28146248 doi: 10.1001/jamapsychiatry.2016.3084
Ng TH, Alloy LB, Smith DV. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl Psychiatry. 2019;9:293.
pubmed: 31712555 pmcid: 6848107 doi: 10.1038/s41398-019-0644-x
Halahakoon DC, Kieslich K, O’Driscoll C, Nair A, Lewis G, Roiser JP. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry. 2020;77:1286–95.
pubmed: 32725180 pmcid: 7391183 doi: 10.1001/jamapsychiatry.2020.2139
Liang S, Wu Y, Hanxiaoran L, Greenshaw AJ, Li T. Anhedonia in depression and schizophrenia: brain reward and aversion circuits. Neuropsychiatr Dis Treat. 2022;18:1385–96.
pubmed: 35836582 pmcid: 9273831 doi: 10.2147/NDT.S367839
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.
pubmed: 19812543 doi: 10.1038/npp.2009.129
Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199:457–80.
pubmed: 18311558 pmcid: 3004012 doi: 10.1007/s00213-008-1099-6
Morales I, Berridge KC. Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152.
pubmed: 32846152 pmcid: 7655589 doi: 10.1016/j.physbeh.2020.113152
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166:1023–35.
pubmed: 20109531 doi: 10.1016/j.neuroscience.2010.01.036
Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab. 2010;30:1682–706.
pubmed: 20664611 pmcid: 3023404 doi: 10.1038/jcbfm.2010.104
Tyacke RJ, Nutt DJ, Optimising PET. approaches to measuring 5-HT release in human brain. Synapse. 2015;69:505–11.
pubmed: 26089243 doi: 10.1002/syn.21835
Ginovart N. Imaging the dopamine system with in vivo [11C]raclopride displacement studies: understanding the true mechanism. Mol Imaging Biol. 2005;7:45–52.
pubmed: 15912275 doi: 10.1007/s11307-005-0932-0
Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP, et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry. 2012;17:1254–60.
pubmed: 22665264 doi: 10.1038/mp.2012.78
Yang KC, Takano A, Halldin C, Farde L, Finnema SJ. Serotonin concentration enhancers at clinically relevant doses reduce [(11)C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Transl Psychiatry. 2018;8:132.
pubmed: 30013068 pmcid: 6048172 doi: 10.1038/s41398-018-0178-7
Erritzoe D, Ashok AH, Searle GE, Colasanti A, Turton S, Lewis Y, et al. Serotonin release measured in the human brain: a PET study with [(11)C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology. 2020;45:804–10.
pubmed: 31715617 doi: 10.1038/s41386-019-0567-5
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, et al. Visual stimuli induce serotonin release in occipital cortex: a simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp. 2020;41:4753–63.
Hahn A, Reed MB, Pichler V, Michenthaler P, Rischka L, Godbersen MG, et al. Functional dynamics of dopamine synthesis during monetary reward and punishment processing. J Cereb Blood Flow Metab. 2021;41:2973–85.
pubmed: 34053336 pmcid: 8543667 doi: 10.1177/0271678X211019827
Hery F, Simonnet G, Bourgoin S, Soubrie P, Artaud F, Hamon M, et al. Effect of nerve activity on the in vivo release of [3H]serotonin continuously formed from L-[3H]tryptophan in the caudate nucleus of the cat. Brain Res. 1979;169:317–34.
pubmed: 221075 doi: 10.1016/0006-8993(79)91033-3
Hamon M, Bourgoin S, Artaud F, Glowinski J. The role of intraneuronal 5-HT and of tryptophan hydroxylase activation in the control of 5-HT synthesis in rat brain slices incubated in K+-enriched medium. J Neurochem. 1979;33:1031–42.
pubmed: 315449 doi: 10.1111/j.1471-4159.1979.tb05239.x
Yamane F, Tohyama Y, Diksic M. Acute and chronic D-fenfluramine treatments have different effects on serotonin synthesis rates in the rat brain: an autoradiographic study. Neurochem Res. 1999;24:1611–20.
pubmed: 10591413 doi: 10.1023/A:1021120603457
Visser AKD, van Waarde A, Willemsen ATM, Bosker FJ, Luiten PGM, den Boer JA, et al. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nuclear Med Mol Imaging. 2011;38:576–91.
doi: 10.1007/s00259-010-1663-2
Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT. Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse. 1998;28:33–43.
Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab. 1997;17:659–69.
Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klobl M, et al. Reduced task durations in functional PET imaging with [(18)F]FDG approaching that of functional MRI. Neuroimage. 2018;181:323–30.
pubmed: 29966719 doi: 10.1016/j.neuroimage.2018.06.079
Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33:2332–41.
pubmed: 25055381 doi: 10.1109/TMI.2014.2340135
Hahn A, Reed MB, Vraka C, Godbersen GM, Klug S, Komorowski A, et al. High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. Eur J Nucl Med Mol Imaging. 2024;51:1310–22.
Reed MB, Ponce de León M, Klug S, Milz C, Silberbauer LR, Falb P, et al. Optimal filtering strategies for task-specific functional PET imaging. biorXiv. 2024 https://doi.org/10.1101/2024.04.25.591053 .
Oldham S, Murawski C, Fornito A, Youssef G, Yucel M, Lorenzetti V. The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp. 2018;39:3398–418.
pubmed: 29696725 pmcid: 6055646 doi: 10.1002/hbm.24184
Mayer FP, Niello M, Cintulova D, Sideromenos S, Maier J, Li Y, et al. Serotonin-releasing agents with reduced off-target effects. Mol Psychiatry. 2023;28:722–32.
pubmed: 36352123 doi: 10.1038/s41380-022-01843-w
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2023;28:3243–56.
pubmed: 35854107 doi: 10.1038/s41380-022-01661-0
Albert PR, Blier P. Does serotonin matter in depression? J Psychiatry Neurosci. 2023;48:E400–3.
pubmed: 37857415 pmcid: 10599657 doi: 10.1503/jpn.230130
Almulla AF, Maes M. Although serotonin is not a major player in depression, its precursor is. Mol Psychiatry. 2023;28:3155–6.
pubmed: 37322063 doi: 10.1038/s41380-023-02092-1
Bartova L, Lanzenberger R, Rujescu D, Kasper S. Reply to: “The serotonin theory of depression: a systematic umbrella review of the evidence” published by Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA in Molecular Psychiatry (2022 Jul 20 doi: 10.1038/s41380-022-01661-0). Mol Psychiatry. 2023;28:3153–4.
El-Mallakh RS, Doroodgar M, Elsayed OH, Kidambi N. The serotonin theory of depression. Mol Psychiatry. 2023;28:3157.
pubmed: 37322061 doi: 10.1038/s41380-023-02091-2
Jacobsen JPR. Serotonin and depression-an alternative interpretation of the data in Moncrieff et al. Mol Psychiatry. 2023;28:3158–9.
pubmed: 37322060 doi: 10.1038/s41380-023-02090-3
Jauhar S, Arnone D, Baldwin DS, Bloomfield M, Browning M, Cleare AJ, et al. A leaky umbrella has little value: evidence clearly indicates the serotonin system is implicated in depression. Mol Psychiatry. 2023;28:3149–52.
pubmed: 37322065 pmcid: 10618084 doi: 10.1038/s41380-023-02095-y
Ogawa S, Fujii T, Koga N, Hori H, Teraishi T, Hattori K, et al. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry. 2014;75:e906–15.
pubmed: 25295433 doi: 10.4088/JCP.13r08908
Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, et al. Measurement of brain regional alpha-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry. 2004;61:556–63.
pubmed: 15184235 doi: 10.1001/archpsyc.61.6.556
Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, et al. Brain serotonin release is reduced in patients with depression: a [(11)C]Cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biol Psychiatry. 2023;93:1089–98.
pubmed: 36635177 doi: 10.1016/j.biopsych.2022.10.012
Holt CE, Martin KC, Schuman EM. Local translation in neurons: visualization and function. Nat Struct Mol Biol. 2019;26:557–66.
pubmed: 31270476 doi: 10.1038/s41594-019-0263-5
Hafner AS, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science. 2019;364:650.
doi: 10.1126/science.aau3644
Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17:9686–705.
pubmed: 9391023 pmcid: 6573402 doi: 10.1523/JNEUROSCI.17-24-09686.1997
Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol. 1993;338:255–78.
pubmed: 8308171 doi: 10.1002/cne.903380209
Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci. 2004;7:887–93.
pubmed: 15235607 doi: 10.1038/nn1279
Dickinson A, Balleine B. Hedonics: The cognitive-motivational interface. (eds Kringelbach, M. L., & Berridge, C.) Pleasures of the brain 74–84. Oxford University Press 2010.
Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58:843–53.
pubmed: 16043128 doi: 10.1016/j.biopsych.2005.05.019
Mitterschiffthaler MT, Kumari V, Malhi GS, Brown RG, Giampietro VP, Brammer MJ, et al. Neural response to pleasant stimuli in anhedonia: an fMRI study. Neuroreport. 2003;14:177–82.
pubmed: 12598724 doi: 10.1097/00001756-200302100-00003
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem. 2021;157:1450–72.
pubmed: 33420731 pmcid: 8178159 doi: 10.1111/jnc.15297
Paulus MP, Stewart JL. Interoception and drug addiction. Neuropharmacology. 2014;76:342–50.
pubmed: 23855999 doi: 10.1016/j.neuropharm.2013.07.002
Haaranen M, Scuppa G, Tambalo S, Jarvi V, Bertozzi SM, Armirotti A, et al. Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry. 2020;10:150.
pubmed: 32424183 pmcid: 7235223 doi: 10.1038/s41398-020-0833-7
Jaramillo AA, Randall PA, Stewart S, Fortino B, Van Voorhies K, Besheer J. Functional role for cortical-striatal circuitry in modulating alcohol self-administration. Neuropharmacology. 2018;130:42–53.
pubmed: 29183687 doi: 10.1016/j.neuropharm.2017.11.035
Cosme CV, Gutman AL, LaLumiere RT. The dorsal agranular insular cortex regulates the cued reinstatement of cocaine-seeking, but not food-seeking, behavior in rats. Neuropsychopharmacology. 2015;40:2425–33.
pubmed: 25837282 pmcid: 4538357 doi: 10.1038/npp.2015.92
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology. 2011;36:74–97.
pubmed: 20881948 doi: 10.1038/npp.2010.151
Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–16.
pubmed: 12371515 doi: 10.1016/S0893-6080(02)00052-7
Fischer AG, Ullsperger M. An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci. 2017;11:484.
pubmed: 29075184 pmcid: 5641585 doi: 10.3389/fnhum.2017.00484
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60.
pubmed: 26286655 pmcid: 4561406 doi: 10.1101/lm.037317.114
Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun. 2016;7:10503.
pubmed: 26818705 pmcid: 4738365 doi: 10.1038/ncomms10503
Saulin A, Savli M, Lanzenberger R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids. 2012;42:2039–57.
pubmed: 21947614 doi: 10.1007/s00726-011-1078-9
Svob Strac D, Pivac N, Muck-Seler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7:35–49.
pubmed: 28123820 pmcid: 5017596 doi: 10.1515/tnsci-2016-0007
Savli M, Bauer A, Mitterhauser M, Ding YS, Hahn A, Kroll T, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. NeuroImage. 2012;63:447–59.
pubmed: 22789740 doi: 10.1016/j.neuroimage.2012.07.001
Haahr ME, Fisher PM, Jensen CG, Frokjaer VG, Mahon BM, Madsen K, et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study. Mol Psychiatry. 2014;19:427–32.
pubmed: 24189342 doi: 10.1038/mp.2013.147
Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R, Salinas C, et al. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med. 2012;53:295–303.
pubmed: 22223878 doi: 10.2967/jnumed.111.093419
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2022;42:1671–92.
pubmed: 33651238 doi: 10.1007/s10571-021-01064-9
del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci. 2008;35:161–74.
pubmed: 18656534 doi: 10.1016/j.ejps.2008.06.015
Zaragoza R. Transport of amino acids across the blood-brain barrier. Front Physiol. 2020;11:973.
pubmed: 33071801 pmcid: 7538855 doi: 10.3389/fphys.2020.00973
Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA. 2001;98:6859–64.
pubmed: 11381119 pmcid: 34443 doi: 10.1073/pnas.111164398
Kessler RM. Imaging methods for evaluating brain function in man. Neurobiol Aging. 2003;24:S21–35.
pubmed: 12829104 doi: 10.1016/S0197-4580(03)00047-2
Fang J, Ohba H, Hashimoto F, Tsukada H, Chen F, Liu H. Imaging mitochondrial complex I activation during a vibrotactile stimulation: A PET study using [(18)F]BCPP-EF in the conscious monkey brain. J Cereb Blood Flow Metab. 2020;40:2521–32.
pubmed: 31948325 pmcid: 7820687 doi: 10.1177/0271678X19900034
Chugani DC. alpha-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med. 2011;5:567–75.
pubmed: 22003905 doi: 10.2217/bmm.11.73
Chugani DC, Muzik O. alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20:2–9.
Saito K, Nowak TS Jr, Suyama K, Quearry BJ, Saito M, Crowley JS, et al. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem. 1993;61:2061–70.
pubmed: 8245962 doi: 10.1111/j.1471-4159.1993.tb07443.x
Hery F, Chouvet G, Kan JP, Pujol JF, Glowinski J. Daily variations of various parameters of serotonin metabolism in the rat brain. II. Circadian variations in serum and cerebral tryptophan levels: lack of correlation with 5-HT turnover. Brain Res. 1977;123:137–45.
pubmed: 843912 doi: 10.1016/0006-8993(77)90648-5
Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.
pubmed: 19918244 doi: 10.1038/mp.2009.116
Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020;25:131–47.
pubmed: 30980044 doi: 10.1038/s41380-019-0414-4
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry. 2021;26:4158–78.
pubmed: 33230205 doi: 10.1038/s41380-020-00951-9
Lundquist P, Hartvig P, Blomquist G, Hammarlund-Udenaes M, Langstrom B. 5-hydroxy-L-[beta-C-11]tryptophan versus alpha-[C-11]methyl-L-tryptophan for positron emission tomography imaging of serotonin synthesis capacity in the rhesus monkey brain. J Cereb Blood Flow Metab. 2007;27:821–30.
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, et al. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife. 2023;12:e84683.
pubmed: 37226880 pmcid: 10229117 doi: 10.7554/eLife.84683

Auteurs

Andreas Hahn (A)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. andreas.hahn@meduniwien.ac.at.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria. andreas.hahn@meduniwien.ac.at.

Murray B Reed (MB)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Matej Murgaš (M)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Chrysoula Vraka (C)

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.

Sebastian Klug (S)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Clemens Schmidt (C)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Godber M Godbersen (GM)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Benjamin Eggerstorfer (B)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

David Gomola (D)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Leo R Silberbauer (LR)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

Lukas Nics (L)

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.

Cécile Philippe (C)

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.

Marcus Hacker (M)

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.

Rupert Lanzenberger (R)

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. rupert.lanzenberger@meduniwien.ac.at.
Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria. rupert.lanzenberger@meduniwien.ac.at.

Classifications MeSH