Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
09
02
2024
accepted:
12
08
2024
revised:
26
07
2024
medline:
24
8
2024
pubmed:
24
8
2024
entrez:
23
8
2024
Statut:
aheadofprint
Résumé
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [
Identifiants
pubmed: 39179904
doi: 10.1038/s41380-024-02696-1
pii: 10.1038/s41380-024-02696-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Vienna Science and Technology Fund (Wiener Wissenschafts-, Forschungs- und Technologiefonds)
ID : DOI: 10.47379/CS18039
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : DOI: 10.55776/KLI1006
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : DOI: 10.55776/KLI610
Informations de copyright
© 2024. The Author(s).
Références
Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction: an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74:387–98.
pubmed: 28146248
doi: 10.1001/jamapsychiatry.2016.3084
Ng TH, Alloy LB, Smith DV. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl Psychiatry. 2019;9:293.
pubmed: 31712555
pmcid: 6848107
doi: 10.1038/s41398-019-0644-x
Halahakoon DC, Kieslich K, O’Driscoll C, Nair A, Lewis G, Roiser JP. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry. 2020;77:1286–95.
pubmed: 32725180
pmcid: 7391183
doi: 10.1001/jamapsychiatry.2020.2139
Liang S, Wu Y, Hanxiaoran L, Greenshaw AJ, Li T. Anhedonia in depression and schizophrenia: brain reward and aversion circuits. Neuropsychiatr Dis Treat. 2022;18:1385–96.
pubmed: 35836582
pmcid: 9273831
doi: 10.2147/NDT.S367839
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.
pubmed: 19812543
doi: 10.1038/npp.2009.129
Berridge KC, Kringelbach ML. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology. 2008;199:457–80.
pubmed: 18311558
pmcid: 3004012
doi: 10.1007/s00213-008-1099-6
Morales I, Berridge KC. Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152.
pubmed: 32846152
pmcid: 7655589
doi: 10.1016/j.physbeh.2020.113152
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166:1023–35.
pubmed: 20109531
doi: 10.1016/j.neuroscience.2010.01.036
Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab. 2010;30:1682–706.
pubmed: 20664611
pmcid: 3023404
doi: 10.1038/jcbfm.2010.104
Tyacke RJ, Nutt DJ, Optimising PET. approaches to measuring 5-HT release in human brain. Synapse. 2015;69:505–11.
pubmed: 26089243
doi: 10.1002/syn.21835
Ginovart N. Imaging the dopamine system with in vivo [11C]raclopride displacement studies: understanding the true mechanism. Mol Imaging Biol. 2005;7:45–52.
pubmed: 15912275
doi: 10.1007/s11307-005-0932-0
Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP, et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry. 2012;17:1254–60.
pubmed: 22665264
doi: 10.1038/mp.2012.78
Yang KC, Takano A, Halldin C, Farde L, Finnema SJ. Serotonin concentration enhancers at clinically relevant doses reduce [(11)C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Transl Psychiatry. 2018;8:132.
pubmed: 30013068
pmcid: 6048172
doi: 10.1038/s41398-018-0178-7
Erritzoe D, Ashok AH, Searle GE, Colasanti A, Turton S, Lewis Y, et al. Serotonin release measured in the human brain: a PET study with [(11)C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology. 2020;45:804–10.
pubmed: 31715617
doi: 10.1038/s41386-019-0567-5
Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, et al. Visual stimuli induce serotonin release in occipital cortex: a simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp. 2020;41:4753–63.
Hahn A, Reed MB, Pichler V, Michenthaler P, Rischka L, Godbersen MG, et al. Functional dynamics of dopamine synthesis during monetary reward and punishment processing. J Cereb Blood Flow Metab. 2021;41:2973–85.
pubmed: 34053336
pmcid: 8543667
doi: 10.1177/0271678X211019827
Hery F, Simonnet G, Bourgoin S, Soubrie P, Artaud F, Hamon M, et al. Effect of nerve activity on the in vivo release of [3H]serotonin continuously formed from L-[3H]tryptophan in the caudate nucleus of the cat. Brain Res. 1979;169:317–34.
pubmed: 221075
doi: 10.1016/0006-8993(79)91033-3
Hamon M, Bourgoin S, Artaud F, Glowinski J. The role of intraneuronal 5-HT and of tryptophan hydroxylase activation in the control of 5-HT synthesis in rat brain slices incubated in K+-enriched medium. J Neurochem. 1979;33:1031–42.
pubmed: 315449
doi: 10.1111/j.1471-4159.1979.tb05239.x
Yamane F, Tohyama Y, Diksic M. Acute and chronic D-fenfluramine treatments have different effects on serotonin synthesis rates in the rat brain: an autoradiographic study. Neurochem Res. 1999;24:1611–20.
pubmed: 10591413
doi: 10.1023/A:1021120603457
Visser AKD, van Waarde A, Willemsen ATM, Bosker FJ, Luiten PGM, den Boer JA, et al. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nuclear Med Mol Imaging. 2011;38:576–91.
doi: 10.1007/s00259-010-1663-2
Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT. Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse. 1998;28:33–43.
Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab. 1997;17:659–69.
Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klobl M, et al. Reduced task durations in functional PET imaging with [(18)F]FDG approaching that of functional MRI. Neuroimage. 2018;181:323–30.
pubmed: 29966719
doi: 10.1016/j.neuroimage.2018.06.079
Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33:2332–41.
pubmed: 25055381
doi: 10.1109/TMI.2014.2340135
Hahn A, Reed MB, Vraka C, Godbersen GM, Klug S, Komorowski A, et al. High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. Eur J Nucl Med Mol Imaging. 2024;51:1310–22.
Reed MB, Ponce de León M, Klug S, Milz C, Silberbauer LR, Falb P, et al. Optimal filtering strategies for task-specific functional PET imaging. biorXiv. 2024 https://doi.org/10.1101/2024.04.25.591053 .
Oldham S, Murawski C, Fornito A, Youssef G, Yucel M, Lorenzetti V. The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp. 2018;39:3398–418.
pubmed: 29696725
pmcid: 6055646
doi: 10.1002/hbm.24184
Mayer FP, Niello M, Cintulova D, Sideromenos S, Maier J, Li Y, et al. Serotonin-releasing agents with reduced off-target effects. Mol Psychiatry. 2023;28:722–32.
pubmed: 36352123
doi: 10.1038/s41380-022-01843-w
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2023;28:3243–56.
pubmed: 35854107
doi: 10.1038/s41380-022-01661-0
Albert PR, Blier P. Does serotonin matter in depression? J Psychiatry Neurosci. 2023;48:E400–3.
pubmed: 37857415
pmcid: 10599657
doi: 10.1503/jpn.230130
Almulla AF, Maes M. Although serotonin is not a major player in depression, its precursor is. Mol Psychiatry. 2023;28:3155–6.
pubmed: 37322063
doi: 10.1038/s41380-023-02092-1
Bartova L, Lanzenberger R, Rujescu D, Kasper S. Reply to: “The serotonin theory of depression: a systematic umbrella review of the evidence” published by Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA in Molecular Psychiatry (2022 Jul 20 doi: 10.1038/s41380-022-01661-0). Mol Psychiatry. 2023;28:3153–4.
El-Mallakh RS, Doroodgar M, Elsayed OH, Kidambi N. The serotonin theory of depression. Mol Psychiatry. 2023;28:3157.
pubmed: 37322061
doi: 10.1038/s41380-023-02091-2
Jacobsen JPR. Serotonin and depression-an alternative interpretation of the data in Moncrieff et al. Mol Psychiatry. 2023;28:3158–9.
pubmed: 37322060
doi: 10.1038/s41380-023-02090-3
Jauhar S, Arnone D, Baldwin DS, Bloomfield M, Browning M, Cleare AJ, et al. A leaky umbrella has little value: evidence clearly indicates the serotonin system is implicated in depression. Mol Psychiatry. 2023;28:3149–52.
pubmed: 37322065
pmcid: 10618084
doi: 10.1038/s41380-023-02095-y
Ogawa S, Fujii T, Koga N, Hori H, Teraishi T, Hattori K, et al. Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry. 2014;75:e906–15.
pubmed: 25295433
doi: 10.4088/JCP.13r08908
Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, et al. Measurement of brain regional alpha-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry. 2004;61:556–63.
pubmed: 15184235
doi: 10.1001/archpsyc.61.6.556
Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, et al. Brain serotonin release is reduced in patients with depression: a [(11)C]Cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biol Psychiatry. 2023;93:1089–98.
pubmed: 36635177
doi: 10.1016/j.biopsych.2022.10.012
Holt CE, Martin KC, Schuman EM. Local translation in neurons: visualization and function. Nat Struct Mol Biol. 2019;26:557–66.
pubmed: 31270476
doi: 10.1038/s41594-019-0263-5
Hafner AS, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science. 2019;364:650.
doi: 10.1126/science.aau3644
Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17:9686–705.
pubmed: 9391023
pmcid: 6573402
doi: 10.1523/JNEUROSCI.17-24-09686.1997
Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol. 1993;338:255–78.
pubmed: 8308171
doi: 10.1002/cne.903380209
Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci. 2004;7:887–93.
pubmed: 15235607
doi: 10.1038/nn1279
Dickinson A, Balleine B. Hedonics: The cognitive-motivational interface. (eds Kringelbach, M. L., & Berridge, C.) Pleasures of the brain 74–84. Oxford University Press 2010.
Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58:843–53.
pubmed: 16043128
doi: 10.1016/j.biopsych.2005.05.019
Mitterschiffthaler MT, Kumari V, Malhi GS, Brown RG, Giampietro VP, Brammer MJ, et al. Neural response to pleasant stimuli in anhedonia: an fMRI study. Neuroreport. 2003;14:177–82.
pubmed: 12598724
doi: 10.1097/00001756-200302100-00003
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem. 2021;157:1450–72.
pubmed: 33420731
pmcid: 8178159
doi: 10.1111/jnc.15297
Paulus MP, Stewart JL. Interoception and drug addiction. Neuropharmacology. 2014;76:342–50.
pubmed: 23855999
doi: 10.1016/j.neuropharm.2013.07.002
Haaranen M, Scuppa G, Tambalo S, Jarvi V, Bertozzi SM, Armirotti A, et al. Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry. 2020;10:150.
pubmed: 32424183
pmcid: 7235223
doi: 10.1038/s41398-020-0833-7
Jaramillo AA, Randall PA, Stewart S, Fortino B, Van Voorhies K, Besheer J. Functional role for cortical-striatal circuitry in modulating alcohol self-administration. Neuropharmacology. 2018;130:42–53.
pubmed: 29183687
doi: 10.1016/j.neuropharm.2017.11.035
Cosme CV, Gutman AL, LaLumiere RT. The dorsal agranular insular cortex regulates the cued reinstatement of cocaine-seeking, but not food-seeking, behavior in rats. Neuropsychopharmacology. 2015;40:2425–33.
pubmed: 25837282
pmcid: 4538357
doi: 10.1038/npp.2015.92
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology. 2011;36:74–97.
pubmed: 20881948
doi: 10.1038/npp.2010.151
Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603–16.
pubmed: 12371515
doi: 10.1016/S0893-6080(02)00052-7
Fischer AG, Ullsperger M. An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci. 2017;11:484.
pubmed: 29075184
pmcid: 5641585
doi: 10.3389/fnhum.2017.00484
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. Learn Mem. 2015;22:452–60.
pubmed: 26286655
pmcid: 4561406
doi: 10.1101/lm.037317.114
Li Y, Zhong W, Wang D, Feng Q, Liu Z, Zhou J, et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun. 2016;7:10503.
pubmed: 26818705
pmcid: 4738365
doi: 10.1038/ncomms10503
Saulin A, Savli M, Lanzenberger R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids. 2012;42:2039–57.
pubmed: 21947614
doi: 10.1007/s00726-011-1078-9
Svob Strac D, Pivac N, Muck-Seler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7:35–49.
pubmed: 28123820
pmcid: 5017596
doi: 10.1515/tnsci-2016-0007
Savli M, Bauer A, Mitterhauser M, Ding YS, Hahn A, Kroll T, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. NeuroImage. 2012;63:447–59.
pubmed: 22789740
doi: 10.1016/j.neuroimage.2012.07.001
Haahr ME, Fisher PM, Jensen CG, Frokjaer VG, Mahon BM, Madsen K, et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study. Mol Psychiatry. 2014;19:427–32.
pubmed: 24189342
doi: 10.1038/mp.2013.147
Parker CA, Gunn RN, Rabiner EA, Slifstein M, Comley R, Salinas C, et al. Radiosynthesis and characterization of 11C-GSK215083 as a PET radioligand for the 5-HT6 receptor. J Nucl Med. 2012;53:295–303.
pubmed: 22223878
doi: 10.2967/jnumed.111.093419
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2022;42:1671–92.
pubmed: 33651238
doi: 10.1007/s10571-021-01064-9
del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci. 2008;35:161–74.
pubmed: 18656534
doi: 10.1016/j.ejps.2008.06.015
Zaragoza R. Transport of amino acids across the blood-brain barrier. Front Physiol. 2020;11:973.
pubmed: 33071801
pmcid: 7538855
doi: 10.3389/fphys.2020.00973
Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA. 2001;98:6859–64.
pubmed: 11381119
pmcid: 34443
doi: 10.1073/pnas.111164398
Kessler RM. Imaging methods for evaluating brain function in man. Neurobiol Aging. 2003;24:S21–35.
pubmed: 12829104
doi: 10.1016/S0197-4580(03)00047-2
Fang J, Ohba H, Hashimoto F, Tsukada H, Chen F, Liu H. Imaging mitochondrial complex I activation during a vibrotactile stimulation: A PET study using [(18)F]BCPP-EF in the conscious monkey brain. J Cereb Blood Flow Metab. 2020;40:2521–32.
pubmed: 31948325
pmcid: 7820687
doi: 10.1177/0271678X19900034
Chugani DC. alpha-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med. 2011;5:567–75.
pubmed: 22003905
doi: 10.2217/bmm.11.73
Chugani DC, Muzik O. alpha[C-11]methyl-L-tryptophan PET maps brain serotonin synthesis and kynurenine pathway metabolism. J Cereb Blood Flow Metab. 2000;20:2–9.
Saito K, Nowak TS Jr, Suyama K, Quearry BJ, Saito M, Crowley JS, et al. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. J Neurochem. 1993;61:2061–70.
pubmed: 8245962
doi: 10.1111/j.1471-4159.1993.tb07443.x
Hery F, Chouvet G, Kan JP, Pujol JF, Glowinski J. Daily variations of various parameters of serotonin metabolism in the rat brain. II. Circadian variations in serum and cerebral tryptophan levels: lack of correlation with 5-HT turnover. Brain Res. 1977;123:137–45.
pubmed: 843912
doi: 10.1016/0006-8993(77)90648-5
Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.
pubmed: 19918244
doi: 10.1038/mp.2009.116
Savitz J. The kynurenine pathway: a finger in every pie. Mol Psychiatry. 2020;25:131–47.
pubmed: 30980044
doi: 10.1038/s41380-019-0414-4
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry. 2021;26:4158–78.
pubmed: 33230205
doi: 10.1038/s41380-020-00951-9
Lundquist P, Hartvig P, Blomquist G, Hammarlund-Udenaes M, Langstrom B. 5-hydroxy-L-[beta-C-11]tryptophan versus alpha-[C-11]methyl-L-tryptophan for positron emission tomography imaging of serotonin synthesis capacity in the rhesus monkey brain. J Cereb Blood Flow Metab. 2007;27:821–30.
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, et al. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife. 2023;12:e84683.
pubmed: 37226880
pmcid: 10229117
doi: 10.7554/eLife.84683