Peritoneal and renal DKK3 clearance in peritoneal dialysis.
Humans
Male
Female
Middle Aged
Peritoneal Dialysis
Adaptor Proteins, Signal Transducing
/ metabolism
Chemokines
/ blood
Aged
Adult
Intercellular Signaling Peptides and Proteins
/ metabolism
Kidney Failure, Chronic
/ therapy
Biomarkers
/ blood
Dialysis Solutions
/ metabolism
Kidney
/ metabolism
Peritoneum
/ metabolism
Peritoneal Dialysis, Continuous Ambulatory
Renin-Angiotensin System
/ physiology
Creatinine
/ urine
DKK3
Peritoneal dialysis
RAAS blockade
Journal
BMC nephrology
ISSN: 1471-2369
Titre abrégé: BMC Nephrol
Pays: England
ID NLM: 100967793
Informations de publication
Date de publication:
23 Aug 2024
23 Aug 2024
Historique:
received:
21
01
2024
accepted:
16
08
2024
medline:
24
8
2024
pubmed:
24
8
2024
entrez:
23
8
2024
Statut:
epublish
Résumé
Urinary Dickkopf 3 (DKK3) excretion is a recently established biomarker of renal functional development. Its excretion into the peritoneal cavity has not been reported. We here studied DKK3 in peritoneal dialysis. DKK3 was assessed in serum, urine and dialysate in a prevalent adult peritoneal dialysis cohort and its concentration analyzed in relation to creatinine and clinical characteristics. Highest DKK3 concentrations were found in serum, followed by urine. Dialysate concentrations were significantly lower. Dialysate DKK3 correlated with both other compartments. Serum, dialysate and urine values were stable during three months of follow-up. Continuous ambulatory dialysis (CAPD) but not cycler-assisted peritoneal dialysis (CCPD) volume-dependently increased peritoneal DKK3 in relation to creatinine. RAAS blockade significantly decreased urinary, but not serum or peritoneal DKK3. Our data provide a detailed characterization of DKK3 in peritoneal dialysis. They support the notion that the RAAS system is essential for renal DKK3 handling.
Sections du résumé
BACKGROUND
BACKGROUND
Urinary Dickkopf 3 (DKK3) excretion is a recently established biomarker of renal functional development. Its excretion into the peritoneal cavity has not been reported. We here studied DKK3 in peritoneal dialysis.
METHODS
METHODS
DKK3 was assessed in serum, urine and dialysate in a prevalent adult peritoneal dialysis cohort and its concentration analyzed in relation to creatinine and clinical characteristics.
RESULTS
RESULTS
Highest DKK3 concentrations were found in serum, followed by urine. Dialysate concentrations were significantly lower. Dialysate DKK3 correlated with both other compartments. Serum, dialysate and urine values were stable during three months of follow-up. Continuous ambulatory dialysis (CAPD) but not cycler-assisted peritoneal dialysis (CCPD) volume-dependently increased peritoneal DKK3 in relation to creatinine. RAAS blockade significantly decreased urinary, but not serum or peritoneal DKK3.
CONCLUSION
CONCLUSIONS
Our data provide a detailed characterization of DKK3 in peritoneal dialysis. They support the notion that the RAAS system is essential for renal DKK3 handling.
Identifiants
pubmed: 39179976
doi: 10.1186/s12882-024-03715-7
pii: 10.1186/s12882-024-03715-7
doi:
Substances chimiques
DKK3 protein, human
0
Adaptor Proteins, Signal Transducing
0
Chemokines
0
Intercellular Signaling Peptides and Proteins
0
Biomarkers
0
Dialysis Solutions
0
Creatinine
AYI8EX34EU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
268Informations de copyright
© 2024. The Author(s).
Références
Maliha G, Burke RE, Reddy YNV. Peritoneal Dialysis: are we approaching a modern Renaissance? Kidney360. 2023;4:e1314–7.
doi: 10.34067/KID.0000000000000196
pubmed: 37364586
pmcid: 10550002
Corbett RW, Beckwith H, Lucisano G, Brown EA. Delivering person-centered peritoneal Dialysis. CJASN. 2023. https://doi.org/10.2215/CJN.0000000000000281 .
doi: 10.2215/CJN.0000000000000281
pubmed: 37611155
Brown EA, Blake PG, Boudville N, Davies S, De Arteaga J, Dong J, et al. International Society for Peritoneal Dialysis practice recommendations: prescribing high-quality goal-directed peritoneal dialysis. Perit Dial Int. 2020;40:244–53.
doi: 10.1177/0896860819895364
pubmed: 32063219
Meyer TW, Bargman JM. The removal of Uremic Solutes by Peritoneal Dialysis. JASN. 2023;34:1919–27.
doi: 10.1681/ASN.0000000000000211
pubmed: 37553867
Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, et al. Chronic kidney Disease and Coronary Artery Disease: JACC State-of-the-art review. J Am Coll Cardiol. 2019;74:1823–38.
doi: 10.1016/j.jacc.2019.08.1017
pubmed: 31582143
Liu C, Debnath N, Mosoyan G, Chauhan K, Vasquez-Rios G, Soudant C, et al. Systematic review and Meta-analysis of plasma and urine biomarkers for CKD outcomes. JASN. 2022;33:1657–72.
doi: 10.1681/ASN.2022010098
pubmed: 35858701
pmcid: 9529190
Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney Injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: a Consensus Statement. JAMA Netw Open. 2020;3:e2019209.
doi: 10.1001/jamanetworkopen.2020.19209
pubmed: 33021646
Schunk SJ, Floege J, Fliser D, Speer T. WNT–β-catenin signalling — a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021;17:172–84.
doi: 10.1038/s41581-020-00343-w
pubmed: 32989282
Schunk SJ, Speer T, Petrakis I, Fliser D. Dickkopf 3—a novel biomarker of the ‘kidney injury continuum’. Nephrol Dialysis Transplantation. 2021;36:761–7.
doi: 10.1093/ndt/gfaa003
Piek A, Suthahar N, Voors AA, De Boer RA, Silljé HHW. A combined bioinformatics, experimental and clinical approach to identify novel cardiac-specific heart failure biomarkers: is Dickkopf ‐3 (DKK3) a possible candidate? Eur J Heart Fail. 2020;22:2065–74.
doi: 10.1002/ejhf.1988
pubmed: 32809235
Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, et al. Functional genomic screening during somatic cell reprogramming identifies DKK3 as a roadblock of Organ Regeneration. Adv Sci. 2021;8:2100626.
doi: 10.1002/advs.202100626
Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Supplements. 2014;4:84–90.
doi: 10.1038/kisup.2014.16
Rodríguez-Iturbe B, Johnson RR, Herrera-Acosta J. Tubulointerstitial damage and progression of renal failure. Kidney Int. 2005;68:S82–6.
doi: 10.1111/j.1523-1755.2005.09915.x
Federico G, Meister M, Mathow D, Heine GH, Moldenhauer G, Popovic ZV et al. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight. 2016;1.
Zewinger S, Rauen T, Rudnicki M, Federico G, Wagner M, Triem S, et al. Dickkopf-3 (DKK3) in urine identifies patients with short-term risk of eGFR loss. JASN. 2018;29:2722–33.
doi: 10.1681/ASN.2018040405
pubmed: 30279273
pmcid: 6218861
Schunk SJ, Zarbock A, Meersch M, Küllmar M, Kellum JA, Schmit D, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. 2019;394:488–96.
doi: 10.1016/S0140-6736(19)30769-X
pubmed: 31202596
Dziamałek-Macioszczyk P, Winiarska A, Pawłowska A, Wojtacha P, Stompór T. Patterns of Dickkopf-3 serum and urine levels at different stages of chronic kidney disease. JCM. 2023;12:4705.
doi: 10.3390/jcm12144705
pubmed: 37510820
pmcid: 10380869
Arjune S, Späth MR, Oehm S, Todorova P, Schunk SJ, Lettenmeier K, et al. DKK3 as a potential novel biomarker in patients with autosomal polycystic kidney disease. Clin Kidney J. 2024;17:sfad262.
doi: 10.1093/ckj/sfad262
pubmed: 38186869
Speer T, Schunk SJ, Sarakpi T, Schmit D, Wagner M, Arnold L, et al. Urinary DKK3 as a biomarker for short-term kidney function decline in children with chronic kidney disease: an observational cohort study. Lancet Child Adolesc Health. 2023;7:405–14.
doi: 10.1016/S2352-4642(23)00049-4
pubmed: 37119829
Schuster A, Steines L, Müller K, Zeman F, Findeisen P, Banas B, et al. Dickkopf 3—A New Indicator for the deterioration of allograft function after kidney transplantation. Front Med. 2022;9:885018.
doi: 10.3389/fmed.2022.885018
Jehn U, Altuner U, Henkel L, Menke A, Strauss M, Pavenstädt H et al. Urinary dickkopf 3 in a kidney transplant and living donor cohort – independent risk factor or merely GFR-related? Preprint. In Review; 2023.
Torigoe K, Muta K, Tsuji K, Yamashita A, Torigoe M, Abe S, et al. Association of urinary Dickkopf-3 with residual renal function decline in patients undergoing peritoneal Dialysis. Medicina. 2021;57:631.
doi: 10.3390/medicina57060631
pubmed: 34207077
pmcid: 8235738
Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28:526–34.
doi: 10.1038/ki.1985.160
pubmed: 3934452
Phatthanasobhon S, Nochaiwong S, Thavorn K, Noppakun K, Panyathong S, Suteeka Y, et al. Effectiveness of renin-angiotensin-aldosterone system blockade on residual kidney function and peritoneal membrane function in peritoneal Dialysis patients: A Network Meta-Analysis. Sci Rep. 2019;9:19582.
doi: 10.1038/s41598-019-55561-5
pubmed: 31862905
pmcid: 6925258
Human proteome atlas. https://www.proteinatlas.org/ENSG00000050165-DKK3/tissue+cell+type , accessed 1-15-2024.
Nessim SJ, Perl J, Bargman JM. The renin–angiotensin–aldosterone system in peritoneal dialysis: is what is good for the kidney also good for the peritoneum? Kidney Int. 2010;78:23–8.
doi: 10.1038/ki.2010.90
pubmed: 20336052