Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization.


Journal

BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194

Informations de publication

Date de publication:
24 Aug 2024
Historique:
received: 07 04 2024
accepted: 14 08 2024
medline: 24 8 2024
pubmed: 24 8 2024
entrez: 23 8 2024
Statut: epublish

Résumé

Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning technique for integrating omics data along with a variable of interest (e.g., phenotype of complex disease), and reconstructing multi-omics networks that are specific to this variable. We present the second-generation SmCCNet (SmCCNet 2.0) that adeptly integrates single or multiple omics data types along with a quantitative or binary phenotype of interest. In addition, this new package offers a streamlined setup process that can be configured manually or automatically, ensuring a flexible and user-friendly experience. AVAILABILITY : This package is available in both CRAN: https://cran.r-project.org/web/packages/SmCCNet/index.html and Github: https://github.com/KechrisLab/SmCCNet under the MIT license. The network visualization tool is available at https://smccnet.shinyapps.io/smccnetnetwork/ .

Identifiants

pubmed: 39179997
doi: 10.1186/s12859-024-05900-9
pii: 10.1186/s12859-024-05900-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

276

Subventions

Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NIH HHS
ID : HL152725
Pays : United States
Organisme : NHLBI NIH HHS
ID : https://topmed.nhlbi.nih.gov/awards/15744
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:1–15.
doi: 10.1186/s13059-017-1215-1
Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):8124.
doi: 10.15252/msb.20178124
Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, Stegle O. Mofa+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21:1–17.
doi: 10.1186/s13059-020-02015-1
Hawe JS, Theis FJ, Heinig M. Inferring interaction networks from multi-omics data. Front Genet. 2019;10:535.
doi: 10.3389/fgene.2019.00535 pubmed: 31249591 pmcid: 6582773
Henao JD, Lauber M, Azevedo M, Grekova A, Theis F, List M, Ogris C, Schubert B. Multi-omics regulatory network inference in the presence of missing data. Brief Bioinform. 2023;24(5):309.
doi: 10.1093/bib/bbad309
Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Lê Cao K-A. Diablo: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–62.
doi: 10.1093/bioinformatics/bty1054 pubmed: 30657866 pmcid: 6735831
Hotelling H. Relations between two sets of variates. In: Breakthroughs in Statistics: Methodology and Distribution, pp. 162–190. Springer, 1992.
Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical applications in genetics and molecular biology 2009;8(1).
Jiang MZ, Aguet F, Ardlie K, Chen J, Cornell E, Cruz D, Durda P, Gabriel SB, Gerszten RE, Guo X, et al. Canonical correlation analysis for multi-omics: application to cross-cohort analysis. PLoS Genet. 2023;19(5):1010517.
doi: 10.1371/journal.pgen.1010517
Rodosthenous T, Shahrezaei V, Evangelou M. Integrating multi-omics data through sparse canonical correlation analysis for the prediction of complex traits: a comparison study. Bioinformatics. 2020;36(17):4616–25.
doi: 10.1093/bioinformatics/btaa530 pubmed: 32437529 pmcid: 7750936
Moon S, Hwang J, Lee H. Sdgcca: supervised deep generalized canonical correlation analysis for multi-omics integration. J Comput Biol. 2022;29(8):892–907.
doi: 10.1089/cmb.2021.0598 pubmed: 35951002 pmcid: 9805883
Shi WJ, Zhuang Y, Russell PH, Hobbs BD, Parker MM, Castaldi PJ, Rudra P, Vestal B, Hersh CP, Saba LM, et al. Unsupervised discovery of phenotype-specific multi-omics networks. Bioinformatics. 2019;35(21):4336–43.
doi: 10.1093/bioinformatics/btz226 pubmed: 30957844 pmcid: 6931269
Mastej E, Gillenwater L, Zhuang Y, Pratte KA, Bowler RP, Kechris K. Identifying protein-metabolite networks associated with copd phenotypes. Metabolites. 2020;10(4):124.
doi: 10.3390/metabo10040124 pubmed: 32218378 pmcid: 7241079
Zhuang Y, Hobbs BD, Hersh CP, Kechris K. Identifying miRNA-mRNA networks associated with COPD phenotypes. Front Genet. 2021;12: 748356.
doi: 10.3389/fgene.2021.748356 pubmed: 34777474 pmcid: 8581181
Graham BI, Harris JK, Zemanick ET, Wagner BD. Integrating airway microbiome and blood proteomics data to identify multi-omic networks associated with response to pulmonary infection. The microbe. 2023;1: 100023.
doi: 10.1016/j.microb.2023.100023 pubmed: 38264413 pmcid: 10805068
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.
doi: 10.1111/j.2517-6161.1996.tb02080.x
Chung D, Keles S. Sparse partial least squares classification for high dimensional data. Stat Appl Gene Mol Biol 2010;9(1).
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul AW, Cho M, et al. Proteomic networks and related genetic variants associated with smoking and chronic obstructive pulmonary disease. medRxiv, 2024–02 2024.
Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2012;2(1):86–97.
Abdi H, Williams LJ. Principal component analysis. Wiley interdisciplinary reviews: computational statistics. 2010;2(4):433–59.
doi: 10.1002/wics.101
Vu T, Litkowski EM, Liu W, Pratte KA, Lange L, Bowler RP, Banaei-Kashani F, Kechris KJ. Netshy: network summarization via a hybrid approach leveraging topological properties. Bioinformatics. 2023;39(1):818.
doi: 10.1093/bioinformatics/btac818
Page L, Brin S, Motwani R, Winograd T. The pagerank citation ranking: bring order to the web. Technical report, Technical report, stanford University 1998.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
doi: 10.1101/gr.1239303 pubmed: 14597658 pmcid: 403769
Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. Rcy3: Network biology using cytoscape from within r. F1000Research 2019;8.
Vaughan D, Dancho M. Furrr: apply mapping functions in parallel using futures. R package version 0.1. 0 2018.
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al. Tcgabiolinks: an r/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):71–71.
doi: 10.1093/nar/gkv1507
Malkas LH, Herbert BS, Abdel-Aziz W, Dobrolecki LE, Liu Y, Agarwal B, Hoelz D, Badve S, Schnaper L, Arnold RJ, et al. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci. 2006;103(51):19472–7.
doi: 10.1073/pnas.0604614103 pubmed: 17159154 pmcid: 1697829
Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic p2x7 receptor. PLoS ONE. 2013;8(12):80707.
doi: 10.1371/journal.pone.0080707
Gan L, Sun T, Li B, Tian J, Zhang J, Chen X, Zhong J, Yang X, Li Q. Serum miR-146a and miR-150 as potential new biomarkers for hip fracture-induced acute lung injury. Mediators Inflamm. 2018;2018(1):8101359.
pubmed: 30510490 pmcid: 6230404
Jiang XP, Elliott RL, Head JF. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res. 2010;30(3):759–65.
pubmed: 20392994
Tan W, Liu M, Wang L, Guo Y, Wei C, Zhang S, Luo C, Liu N. Novel immune-related genes in the tumor microenvironment with prognostic value in breast cancer. BMC Cancer. 2021;21:1–16.
doi: 10.1186/s12885-021-07837-1

Auteurs

Weixuan Liu (W)

Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. weixuan.liu@cuanschutz.edu.

Thao Vu (T)

Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

Iain R Konigsberg (I)

Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

Katherine A Pratte (K)

Department of Biostatistics, National Jewish Health, Denver, 80206, CO, USA.

Yonghua Zhuang (Y)

Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.

Katerina J Kechris (KJ)

Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH