Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: a first-in-human, single-arm, open-label, phase I clinical trial.
Exosomes
Mesenchymal stem cells
Neuroprotection
Spinal cord injury
Journal
Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581
Informations de publication
Date de publication:
26 Aug 2024
26 Aug 2024
Historique:
received:
01
02
2024
accepted:
30
07
2024
medline:
26
8
2024
pubmed:
26
8
2024
entrez:
25
8
2024
Statut:
epublish
Résumé
Neurological and functional impairments are commonly observed in individuals with spinal cord injury (SCI) due to insufficient regeneration of damaged axons. Exosomes play a crucial role in the paracrine effects of mesenchymal stem cells (MSCs) and have emerged as a promising therapeutic approach for SCI. Thus, this study aimed to evaluate the safety and potential effects of intrathecal administration of allogeneic exosomes derived from human umbilical cord MSCs (HUC-MSCs) in patients with complete subacute SCI. This study was a single-arm, open-label, phase I clinical trial with a 12-month follow-up period. HUC-MSCs were extracted from human umbilical cord tissue, and exosomes were isolated via ultracentrifugation. After intrathecal injection, each participant a underwent complete evaluation, including neurological assessment using the American Spinal Injury Association (ASIA) scale, functional assessment using the Spinal Cord Independence Measure (SCIM-III), neurogenic bowel dysfunction (NBD) assessment using the NBD score, modified Ashworth scale (MAS), and lower urinary tract function questionnaire. Nine patients with complete subacute SCI were recruited. The intrathecal injection of allogeneic HUC-MSCs-exosomes was safe and well tolerated. No early or late adverse event (AE) attributable to the study intervention was observed. Significant improvements in ASIA pinprick (P-value = 0.039) and light touch (P-value = 0.038) scores, SCIM III total score (P-value = 0.027), and NBD score (P-value = 0.042) were also observed at 12-month after the injection compared with baseline. This study demonstrated that intrathecal administration of allogeneic HUC-MSCs-exosomes is safe in patients with subacute SCI. Moreover, it seems that this therapy might be associated with potential clinical and functional improvements in these patients. In this regard, future larger phase II/III clinical trials with adequate power are highly required. Iranian Registry of Clinical Trials, IRCT20200502047277N1. Registered 2 October 2020, https://en.irct.ir/trial/48765 .
Identifiants
pubmed: 39183334
doi: 10.1186/s13287-024-03868-0
pii: 10.1186/s13287-024-03868-0
doi:
Types de publication
Journal Article
Clinical Trial, Phase I
Langues
eng
Sous-ensembles de citation
IM
Pagination
264Subventions
Organisme : Shahid Beheshti University of Medical Sciences
ID : IR.SBMU.MSP.REC.1399.235
Informations de copyright
© 2024. The Author(s).
Références
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Reviews Neurol. 2019;15(12):718–31.
doi: 10.1038/s41582-019-0270-5
James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56–87.
doi: 10.1016/S1474-4422(18)30415-0
Ahuja CS, Wilson JR, Nori S, Kotter M, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Reviews Disease Primers. 2017;3(1):1–21.
Hayta E, Elden H. Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat. 2018;87:25–31.
pubmed: 28803968
doi: 10.1016/j.jchemneu.2017.08.001
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019;10(1):3879.
pubmed: 31462640
pmcid: 6713740
doi: 10.1038/s41467-019-11707-7
Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM. Translational regenerative therapies for chronic spinal cord injury. Int J Mol Sci. 2018;19(6):1776.
pubmed: 29914060
pmcid: 6032191
doi: 10.3390/ijms19061776
Tashiro S, Tsuji O, Shinozaki M, Shibata T, Yoshida T, Tomioka Y, et al. Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regenerative Med. 2021;6(1):81.
doi: 10.1038/s41536-021-00191-7
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Bioscience. 2020;10(1):1–17.
doi: 10.1186/s13578-020-00475-3
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.
pubmed: 14993122
doi: 10.1161/01.CIR.0000121425.42966.F1
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.
pubmed: 19172693
doi: 10.1038/nri2395
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7:1–14.
doi: 10.1186/s13287-016-0394-0
Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Engineering: C. 2018;89:194–204.
doi: 10.1016/j.msec.2018.04.006
Kang J, Guo Y. Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord Injury Model. Neurochem Res. 2022;47(6):1532–40.
pubmed: 35132478
doi: 10.1007/s11064-022-03545-9
Ren Z, Qi Y, Sun S, Tao Y, Shi R. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair. Stem Cells Dev. 2020;29(23):1467–78.
pubmed: 33045910
doi: 10.1089/scd.2020.0133
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.
pubmed: 32029601
pmcid: 7717626
doi: 10.1126/science.aau6977
He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8(1):237.
pubmed: 29290805
pmcid: 5743472
doi: 10.7150/thno.21945
Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, Farzamfar S, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study. J Biomed Mater Res A. 2020;108(3):545–56.
pubmed: 31702867
doi: 10.1002/jbm.a.36835
Yi H, Wang Y. A meta-analysis of exosome in the treatment of spinal cord injury. Open Med. 2021;16(1):1043–60.
doi: 10.1515/med-2021-0304
Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Translational Med. 2020;18(1):1–21.
doi: 10.1186/s12967-020-02622-3
Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Translational Med. 2011;9:1–14.
doi: 10.1186/1479-5876-9-29
El Masry WS, Tsubo M, Katoh S, El Miligui YH, Khan A. Validation of the American spinal injury association (ASIA) motor score and the national acute spinal cord injury study (NASCIS) motor score. Spine. 1996;21(5):614–9.
pubmed: 8852318
doi: 10.1097/00007632-199603010-00015
Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee M, Craven B, et al. The spinal cord independence measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil. 2007;29(24):1926–33.
pubmed: 17852230
doi: 10.1080/09638280601046302
Krogh K, Christensen P, Sabroe S, Laurberg S. Neurogenic bowel dysfunction score. Spinal Cord. 2006;44(10):625–31.
pubmed: 16344850
doi: 10.1038/sj.sc.3101887
Akpinar P, Atici A, Ozkan F, Aktas I, Kulcu D, Sarı A, Durmus B. Reliability of the Modified Ashworth Scale and Modified Tardieu Scale in patients with spinal cord injuries. Spinal Cord. 2017;55(10):944–9.
pubmed: 28485384
doi: 10.1038/sc.2017.48
El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. 2014;23(6):729–45.
pubmed: 23452836
doi: 10.3727/096368913X664540
Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20(6):806–19.
pubmed: 29853256
doi: 10.1016/j.jcyt.2018.03.032
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20(11):2698.
pubmed: 31159345
pmcid: 6600381
doi: 10.3390/ijms20112698
Yeo RWY, Lai RC, Tan KH, Lim SK. Exosome: a novel and safer therapeutic refinement of mesenchymal stem cell. Exosomes Microvesicles. 2013;1:7.
van der Meel R, Fens MH, Vader P, Van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Controlled Release. 2014;195:72–85.
doi: 10.1016/j.jconrel.2014.07.049
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sinica B. 2016;6(4):287–96.
doi: 10.1016/j.apsb.2016.02.001
Hwang I, Shen X, Sprent J. Direct stimulation of naive T cells by membrane vesicles from antigen-presenting cells: distinct roles for CD54 and B7 molecules. Proc Natl Acad Sci. 2003;100(11):6670–5.
pubmed: 12743365
pmcid: 164505
doi: 10.1073/pnas.1131852100
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to Molecular pathways of Exosome-Induced Endothelial Cell ActivationExosome-Induced endothelial cell activation. Cancer Res. 2010;70(4):1668–78.
pubmed: 20124479
doi: 10.1158/0008-5472.CAN-09-2470
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper. J Extracell Vesicles. 2015;4(1):30087.
pubmed: 26725829
doi: 10.3402/jev.v4.30087
Zheng G, Huang R, Qiu G, Ge M, Wang J, Shu Q, Xu J. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018;374:1–15.
pubmed: 29955951
doi: 10.1007/s00441-018-2871-5
Huang C-C, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182–94.
pubmed: 32305445
pmcid: 8040700
doi: 10.1016/j.actbio.2020.04.017
Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, et al. Pilot production of mesenchymal stem/stromal freeze-dried secretome for cell-free regenerative nanomedicine: a validated GMP-compliant process. Cells. 2018;7(11):190.
pubmed: 30380806
pmcid: 6262564
doi: 10.3390/cells7110190
Khorasanizadeh M, Yousefifard M, Eskian M, Lu Y, Chalangari M, Harrop JS, et al. Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurgery: Spine. 2019;30(5):683–99.
pubmed: 30771786
Zhu Y, Soderblom C, Krishnan V, Ashbaugh J, Bethea J, Lee J. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis. 2015;74:114–25.
pubmed: 25461258
doi: 10.1016/j.nbd.2014.10.024
Liu GJ, Nagarajah R, Banati RB, Bennett MR. Glutamate induces directed chemotaxis of microglia. Eur J Neurosci. 2009;29(6):1108–18.
pubmed: 19302147
doi: 10.1111/j.1460-9568.2009.06659.x
Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, et al. Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol. 2014;49:276–87.
pubmed: 23954967
doi: 10.1007/s12035-013-8518-3
Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A et al. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proceedings of the National Academy of Sciences. 2010;107(50):21659-64.
Brown G. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007;35(5):1119–21.
pubmed: 17956292
doi: 10.1042/BST0351119
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–44.
pubmed: 19864556
pmcid: 2788152
doi: 10.1523/JNEUROSCI.3257-09.2009
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.
pubmed: 15530839
doi: 10.1016/j.it.2004.09.015
Brewer KL, Bethea JR, Yezierski RP. Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol. 1999;159(2):484–93.
pubmed: 10506519
doi: 10.1006/exnr.1999.7173
BETHEA JR, NAGASHIMA H, ACOSTA MC, BRICENO C, GOMEZ F, MARCILLO AE, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16(10):851–63.
pubmed: 10547095
doi: 10.1089/neu.1999.16.851
Wang L, Pei S, Han L, Guo B, Li Y, Duan R, et al. Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 subunit in spinal cord injury. Cell Physiol Biochem. 2018;50(4):1535–59.
pubmed: 30376671
doi: 10.1159/000494652
Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J Nanobiotechnol. 2022;20(1):65.
doi: 10.1186/s12951-022-01273-4
Xin W, Qiang S, Jianing D, Jiaming L, Fangqi L, Bin C, et al. Human bone marrow mesenchymal stem cell–derived exosomes attenuate blood–spinal cord barrier disruption via the TIMP2/MMP pathway after acute spinal cord injury. Mol Neurobiol. 2021;58:6490–504.
pubmed: 34554399
doi: 10.1007/s12035-021-02565-w
Huang J-H, Yin X-M, Xu Y, Xu C-C, Lin X, Ye F-B, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 2017;34(24):3388–96.
pubmed: 28665182
doi: 10.1089/neu.2017.5063
Zhang J, Cui Z, Feng G, Bao G, Xu G, Sun Y, et al. RBM5 and p53 expression after rat spinal cord injury: implications for neuronal apoptosis. Int J Biochem Cell Biol. 2015;60:43–52.
pubmed: 25578565
doi: 10.1016/j.biocel.2014.12.020
Lin C-L, Wang J-Y, Huang Y-T, Kuo Y-H, Surendran K, Wang F-S. Wnt/β-catenin signaling modulates survival of high glucose–stressed mesangial cells. J Am Soc Nephrol. 2006;17(10):2812–20.
pubmed: 16943306
doi: 10.1681/ASN.2005121355
Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281(5381):1322–6.
pubmed: 9735050
doi: 10.1126/science.281.5381.1322
Chen J, Zhang C, Li S, Li Z, Lai X, Xia Q. Exosomes derived from nerve stem cells loaded with FTY720 promote the recovery after spinal cord injury in rats by PTEN/AKT signal pathway. Journal of Immunology Research. 2021;2021.
Fan L, Dong J, He X, Zhang C, Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum Exp Toxicol. 2021;40(10):1612–23.
pubmed: 33779331
doi: 10.1177/09603271211003311