Towards spatially selective efferent neuromodulation: anatomical and functional organization of cardiac fibres in the porcine cervical vagus nerve.
afferent and efferent
cardiac
heart failure
neuromodulation
spatially selective
vagus nerve stimulation (VNS)
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
26 Aug 2024
26 Aug 2024
Historique:
received:
01
03
2024
accepted:
09
08
2024
medline:
26
8
2024
pubmed:
26
8
2024
entrez:
26
8
2024
Statut:
aheadofprint
Résumé
Spatially selective vagus nerve stimulation (sVNS) offers a promising approach for addressing heart disease with enhanced precision. Despite its therapeutic potential, VNS is limited by off-target effects and the need for time-consuming titration. Our research aimed to determine the spatial organization of cardiac afferent and efferent fibres within the vagus nerve of pigs to achieve targeted neuromodulation. Using trial-and-error sVNS in vivo and ex vivo micro-computed tomography fascicle tracing, we found significant spatial separation between cardiac afferent and cardiac efferent fibres at the mid-cervical level and they were localized on average on opposite sides of the nerve cross-section. This was consistent between both in vivo and ex vivo methods. Specifically, cardiac afferent fibres were located near pulmonary fibres, consistent with findings of cardiopulmonary convergent circuits and, notably, cardiac efferent fascicles were exclusive. These cardiac efferent regions were located in close proximity to the recurrent laryngeal regions. This is consistent with the roughly equitable spread across the nerve of the afferent and efferent fibres. Our study demonstrated that targeted neuromodulation via sVNS could achieve scalable heart rate decreases without eliciting cardiac afferent-related reflexes; this is desirable for reducing sympathetic overactivation associated with heart disease. These findings indicate that understanding the spatial organization of cardiac-related fibres within the vagus nerve can lead to more precise and effective VNS therapy, minimizing off-target effects and potentially mitigating the need for titration. KEY POINTS: Spatially selective vagus nerve stimulation (sVNS) presents a promising approach for addressing chronic heart disease with enhanced precision. Our study reveals significant spatial separation between cardiac afferent and efferent fibres in the vagus nerve, particularly at the mid-cervical level. Utilizing trial-and-error sVNS in vivo and micro-computed tomography fascicle tracing, we demonstrate the potential for targeted neuromodulation, achieving therapeutic effects such as scalable heart rate decrease without stimulating cardiac afferent-related reflexes. This spatial understanding opens avenues for more effective VNS therapy, minimizing off-target effects and potentially eliminating the need for titration, thereby expediting therapeutic outcomes in myocardial infarction and related conditions.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : UKRI | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/X018415/1
Organisme : HHS | National Institutes of Health (NIH)
ID : 1OT2OD026545-01
Organisme : HHS | National Institutes of Health (NIH)
ID : 1OT2OD023848
Organisme : HHS | National Institutes of Health (NIH)
ID : P01 HL164311-01A1
Organisme : HHS | National Institutes of Health (NIH)
ID : R01HL162921-01A1
Informations de copyright
© 2024 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Agnesi, F., Zinno, C., Strauss, I., Dushpanova, A., Casieri, V., Bernini, F., Terlizzi, D., Gabisonia, K., Paggi, V., Lacour, S. P., Lionetti, V., & Micera, S. (2023). Cardiovascular response to intraneural right vagus nerve stimulation in adult minipig. Neuromodulation: Technology at the Neural Interface. Advance online publication. https://doi.org/10.1016/j.neurom.2023.03.002
Ardell, J. L., Nier, H., Hammer, M., Southerland, E. M., Ardell, C. L., Beaumont, E., Kenknight, B. H., & Armour, J. A. (2017). Defining the neural fulcrum for chronic vagus nerve stimulation: Implications for integrated cardiac control. The Journal of Physiology, 595(22), 6887–6903.
Ardell, J. L., Rajendran, P. S., Nier, H. A., Kenknight, B. H., & Armour, J. A. (2015). Central‐peripheral neural network interactions evoked by vagus nerve stimulation: Functional consequences on control of cardiac function. American Journal of Physiology‐Heart and Circulatory Physiology, 309(10), H1740–H1752.
Aristovich, K., Donega, M., Fjordbakk, C., Tarotin, I., Chapman, C. A. R., Viscasillas, J., Stathopoulou, T.‐R., Crawford, A., Chew, D., Perkins, J., & Holder, D. (2021). Model‐based geometrical optimisation and in vivo validation of a spatially selective multielectrode cuff array for vagus nerve neuromodulation. Journal of Neuroscience Methods, 352, 109079.
Avery, J., Dowrick, T., Faulkner, M., Goren, N., & Holder, D. (2017). A versatile and reproducible multi‐frequency electrical impedance tomography system. Sensors (Basel), 17(2), 280.
Ben‐Menachem, E. (2001). Vagus nerve stimulation, side effects, and long‐term safety. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 18(5), 415–418.
Blanz, S. L., Musselman, E. D., Settell, M. L., Knudsen, B. E., Nicolai, E. N., Trevathan, J. K., Verner, R. S., Begnaud, J., Skubal, A. C., Suminski, A. J., Williams, J. C., Shoffstall, A. J., Grill, W. M., Pelot, N. A., & Ludwig, K. A. (2023). Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect. Journal of Neural Engineering, 20(1), 016051.
Booth, L. C., Yao, S. T., Korsak, A., Farmer, D. G. S., Hood, S. G., Mccormick, D., Boesley, Q., Connelly, A. A., Mcdougall, S. J., Korim, W. S., Guild, S.‐J., Mastitskaya, S., Le, P., Teschemacher, A. G., Kasparov, S., Ackland, G. L., Malpas, S. C., Mcallen, R. M., Allen, A. M., May, C. N., & Gourine, A. V. (2021). Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimulation, 14(1), 88–96.
Capilupi, M. J., Kerath, S. M., & Becker, L. B. (2020). Vagus nerve stimulation and the cardiovascular system. Cold Spring Harbor Perspectives In Medicine, 10(2), a034173.
Chapman, C. A. R., Smith, T. M., Kelly, M., Avery, J., Rouanet, T., Aristovich, K., Chew, D. J., & Holder, D. S. (2019). Optimisation of bioimpedance measurements of neuronal activity with an ex vivo preparation of Cancer pagurus peripheral nerves. Journal of Neuroscience Methods, 327, 108322.
Dacey, M., Salahudeen, O., Swid, M. A., Carlson, C., Shivkumar, K., & Ardell, J. L. (2022). Structural and function organization of intrathoracic extracardiac autonomic projections to the porcine heart: Implications for targeted neuromodulation therapy. Heart Rhythm, 19(6), 975–983.
Devarajan, A., Wang, K.e, Shannon, K., Su, Y., Verheyden, J., Sun, X., & Vaseghi, M. (2022). Convergent cardiorespiratory neurons represent a significant portion of cardiac and respiratory neurons in the vagal ganglia. Frontiers in Cardiovascular Medicine, 9, https://www.frontiersin.org/articles/10.3389/fcvm.2022.959815 [Accessed December 7, 2023].
Dicarlo, L. A., Libbus, I., Kumar, H. U., Mittal, S., Premchand, R. K., Amurthur, B., Kenknight, B. H., Ardell, J. L., & Anand, I. S. (2017). Autonomic regulation therapy to enhance myocardial function in heart failure patients: The ANTHEM‐HFpEF study. ESC Heart Failure, 5(1), 95–100.
Dusi, V., & De Ferrari, G. M. (2021). Vagal stimulation in heart failure. Herz, 46(6), 541–549.
Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L., & Shivkumar, K. (2015). Cardiac innervation and sudden cardiac death. Circulation Research, 116(12), 2005–2019.
Furukawa, Y., Wallick, D. W., Martin, P. J., & Levy, M. N. (1990). Chronotropic and dromotropic responses to stimulation of intracardiac sympathetic nerves to sinoatrial or atrioventricular nodal region in anesthetized dogs. Circulation Research, 66(5), 1391–1399.
Hadaya, J., & Ardell, J. L. (2020). Autonomic modulation for cardiovascular disease. Frontiers in Physiology, 11, 617459.
Hadaya, J., Dajani, A.‐H., Cha, S., Hanna, P., Challita, R., Hoover, D. B., Ajijola, O. A., Shivkumar, K., & Ardell, J. L. (2023). Vagal nerve stimulation reduces ventricular arrhythmias and mitigates adverse neural cardiac remodeling post–myocardial infarction. JACC: Basic to Translational Science, 8(9), 1100–1118.
Hanna, P., Shivkumar, K., & Ardell, J. L. (2018). Calming the nervous heart: Autonomic therapies in heart failure. Cardiac Failure Review, 4(2), 92–98.
Hardwick, J. C., Ryan, S. E., Beaumont, E., Ardell, J. L., & Southerland, E. M. (2014). Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Autonomic Neuroscience, 181, 4–12.
Horn, C. C., Ardell, J. L., & Fisher, L. E. (2019). Electroceutical targeting of the autonomic nervous system. Physiology, 34(2), 150–162.
Howland, R. H. (2014). Vagus nerve stimulation. Current Behavioral Neuroscience Reports, 1(2), 64–73.
Hsieh, J. H., Chen, R. F., Wu, J. J., Yen, C. T., & Chai, C. Y. (1998). Vagal innervation of the gastrointestinal tract arises from dorsal motor nucleus while that of the heart largely from nucleus ambiguus in the cat. Journal of the Autonomic Nervous System, 70(1–2), 38–50.
Jayaprakash, N., Song, W., Toth, V., Vardhan, A., Levy, T., Tomaio, J., Qanud, K., Mughrabi, I., Chang, Y.‐C., Rob, M., Daytz, A., Abbas, A., Nassrallah, Z., Volpe, B. T., Tracey, K. J., Al‐Abed, Y., Datta‐Chaudhuri, T., Miller, L., Barbe, M. F., Lee, S. C., Zanos, T. P., & Zanos, S. (2023). Organ‐ and function‐specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimulation, 16(2), 484–506.
Jenča, D., Melenovský, V., Stehlik, J., Staněk, V., Kettner, J., Kautzner, J., Adámková, V., & Wohlfahrt, P. (2021). Heart failure after myocardial infarction: incidence and predictors. ESC Heart Failure, 8(1), 222–237.
Konstam, M. A., Udelson, J. E., Butler, J., Klein, H. U., Parker, J. D., Teerlink, J. R., Wedge, P. M., Saville, B. R., Ardell, J. L., Libbus, I., & Dicarlo, L. A. (2019). Impact of autonomic regulation therapy in patients with heart failure: ANTHEM‐HFrEF pivotal study design. Circulation Heart Failure, 12(11), e005879.
Li, M., Zheng, C., Sato, T., Kawada, T., Sugimachi, M., & Sunagawa, K. (2004). Vagal nerve stimulation markedly improves long‐term survival after chronic heart failure in rats. Circulation, 109(1), 120–124.
Mastitskaya, S. (2023). Rescuing the Heart: Insights from Neuroscience. The Physiological Society, Available at: https://www.physoc.org/blog/rescuing‐the‐heart‐insights‐from‐neuroscience/ [Accessed December 7, 2023].
Mechanic, O. J., Gavin, M., & Grossman, S. A. (2023). Acute Myocardial Infarction. In StatPearls. StatPearls Publishing, Treasure Island (FL). Available at: http://www.ncbi.nlm.nih.gov/books/NBK459269/ [Accessed October 3, 2023].
Moyé, L. A., Pfeffer, M. A., & Braunwald, E., The Save Investigators. (1991). Rationale, design and baseline characteristics of the survival and ventricular enlargement trial. SAVE Investigators. American Journal of Cardiology, 68(14), 70D–79D.
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., de Ferranti, S., Després, J. P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Judd, S. E., Kissela, B. M., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Liu, S., Mackey, R. H., Matchar, D. B., … American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2015). Heart disease and stroke statistics—2015 Update: a report from the American Heart Association. Circulation, 131(4), e29–e322.
Patros, M., Ottaviani, M. M., Wright, L., Dawood, T., & Macefield, V. G. (2022). Quantification of cardiac and respiratory modulation of axonal activity in the human vagus nerve. The Journal of Physiology, 600(13), 3113–3126.
Pfeffer, M. A. (1994). Mechanistic lessons from the SAVE Study. Survival and Ventricular Enlargement. American Journal of Hypertension, 7(9_Pt_2), 106S‐111S.
Pollina, L., Vallone, F., Ottaviani, M. M., Strauss, I., Carlucci, L., Recchia, F. A., Micera, S., & Moccia, S. (2022). A lightweight learning‐based decoding algorithm for intraneural vagus nerve activity classification in pigs. Journal of Neural Engineering, 19(4), 046033.
Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., Dicarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: Results of the ANTHEM‐HF Trial. Journal of Cardiac Failure, 20(11), 808–816.
Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., Dicarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2016). Extended follow‐up of patients with heart failure receiving autonomic regulation therapy in the ANTHEM‐HF Study. Journal of Cardiac Failure, 22(8), 639–642.
Randall, W. C., Ardell, J. L., & Becker, D. M. (1985). Differential responses accompanying sequential stimulation and ablation of vagal branches to dog heart. American Journal of Physiology, 249(1 Pt 2), H133‐140.
Salavatian, S., Beaumont, E., Longpré, J.‐P., Armour, J. A., Vinet, A., Jacquemet, V., Shivkumar, K., & Ardell, J. L. (2016). Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. American Journal of Physiology‐Heart and Circulatory Physiology, 311(5), H1311–H1320.
Settell, M. L., Pelot, N. A., Knudsen, B. E., Dingle, A. M., Mcconico, A. L., Nicolai, E. N., Trevathan, J. K., Ezzell, J. A., Ross, E. K., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., Zeng, W., Poore, S. O., Populin, L. C., Suminski, A. J., Grill, W. M., & Ludwig, K. A. (2020). Functional vagotopy in the cervical vagus nerve of the domestic pig: Implications for the study of vagus nerve stimulation. Journal of Neural Engineering, 17(2), 026022.
Sharma, K., Premchand, R. K., Mittal, S., Monteiro, R., Libbus, I., Dicarlo, L. A., Ardell, J. L., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2021). Long‐term follow‐up of patients with heart failure and reduced ejection fraction receiving autonomic regulation therapy in the ANTHEM‐HF Pilot Study. International Journal of Cardiology, 323, 175–178.
Thompson, N., Ravagli, E., Mastitskaya, S., Iacoviello, F., Stathopoulou, T.‐R., Perkins, J., Shearing, P. R., Aristovich, K., & Holder, D. (2023). Organotopic organization of the porcine mid‐cervical vagus nerve. Frontiers in Neuroscience, 17, 963503.
Vallone, F., Ottaviani, M. M., Dedola, F., Cutrone, A., Romeni, S., Panarese, A. M., Bernini, F., Cracchiolo, M., Strauss, I., Gabisonia, K., Gorgodze, N., Mazzoni, A., Recchia, F. A., & Micera, S. (2021). Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. Journal of Neural Engineering, 18(4), 0460a2.
Veerakumar, A., Yung, A. R., Liu, Y., & Krasnow, M. A. (2022). Molecularly defined circuits for cardiovascular and cardiopulmonary control. Nature, 606(7915), 739–746.