Technical note: A software tool to extract complexity metrics from radiotherapy treatment plans.
PSQA
automation
complexity metrics
patient‐specific quality assurance
plan complexity
reference dataset
shared software
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
26 Aug 2024
26 Aug 2024
Historique:
revised:
08
08
2024
received:
10
05
2024
accepted:
09
08
2024
medline:
26
8
2024
pubmed:
26
8
2024
entrez:
26
8
2024
Statut:
aheadofprint
Résumé
Complexity metrics are mathematical quantities designed to quantify aspects of radiotherapy treatment plans that may affect both their deliverability and dosimetric accuracy. Despite numerous studies investigating their utility, there remains a notable absence of shared tools for their extraction. This study introduces UCoMX (Universal Complexity Metrics Extractor), a software package designed for the extraction of complexity metrics from the DICOM-RT plan files of radiotherapy treatments. UCoMX is developed around two extraction engines: VCoMX (VMAT Complexity Metrics Extractor) for VMAT/IMRT plans, and TCoMX (Tomotherapy Complexity Metrics Extractor) tailored for Helical Tomotherapy plans. The software, built using Matlab, is freely available in both Matlab-based and stand-alone versions. More than 90 complexity metrics, drawn from relevant literature, are implemented in the package: 43 for VMAT/IMRT and 51 for Helical Tomotherapy. The package is designed to read DICOM-RT plan files generated by most commercially available Treatment Planning Systems (TPSs), across various treatment units. A reference dataset containing VMAT, IMRT, and Helical Tomotherapy plans is provided to serve as a reference for comparing UCoMX with other in-house systems available at other centers. UCoMX offers a straightforward solution for extracting complexity metrics from radiotherapy plans. Its versatility is enhanced through different versions, including Matlab-based and stand-alone, and its compatibility with a wide range of commercially available TPSs and treatment units. UCoMX presents a free, user-friendly tool empowering researchers to compute the complexity of treatment plans efficiently.
Sections du résumé
BACKGROUND
BACKGROUND
Complexity metrics are mathematical quantities designed to quantify aspects of radiotherapy treatment plans that may affect both their deliverability and dosimetric accuracy. Despite numerous studies investigating their utility, there remains a notable absence of shared tools for their extraction.
PURPOSE
OBJECTIVE
This study introduces UCoMX (Universal Complexity Metrics Extractor), a software package designed for the extraction of complexity metrics from the DICOM-RT plan files of radiotherapy treatments.
METHODS
METHODS
UCoMX is developed around two extraction engines: VCoMX (VMAT Complexity Metrics Extractor) for VMAT/IMRT plans, and TCoMX (Tomotherapy Complexity Metrics Extractor) tailored for Helical Tomotherapy plans. The software, built using Matlab, is freely available in both Matlab-based and stand-alone versions. More than 90 complexity metrics, drawn from relevant literature, are implemented in the package: 43 for VMAT/IMRT and 51 for Helical Tomotherapy.
RESULTS
RESULTS
The package is designed to read DICOM-RT plan files generated by most commercially available Treatment Planning Systems (TPSs), across various treatment units. A reference dataset containing VMAT, IMRT, and Helical Tomotherapy plans is provided to serve as a reference for comparing UCoMX with other in-house systems available at other centers.
CONCLUSION
CONCLUSIONS
UCoMX offers a straightforward solution for extracting complexity metrics from radiotherapy plans. Its versatility is enhanced through different versions, including Matlab-based and stand-alone, and its compatibility with a wide range of commercially available TPSs and treatment units. UCoMX presents a free, user-friendly tool empowering researchers to compute the complexity of treatment plans efficiently.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Rehman Jur, Zahra, Ahmad N, et al. Intensity modulated radiation therapy: a review of current practice and future outlooks. J Radiat Res Appl Sci. 2018;11(4):361‐367. doi:10.1016/j.jrras.2018.07.006
Taylor A, Powell MEB. Intensity‐modulated radiotherapy—what is it? Cancer Imaging. 2004;4(2):68‐73. doi:10.1102/1470‐7330.2004.0003
Staffurth J. A review of the clinical evidence for intensity‐modulated radiotherapy. Clin Oncol. 2010;22(8):643‐657. doi:10.1016/j.clon.2010.06.013
Scaggion A, Fusella M, Agnello G, et al. Limiting treatment plan complexity by applying a novel commercial tool. J Appl Clin Med Phys. 2020;21(8):27‐34. doi:10.1002/acm2.12908
Chiavassa S, Bessieres I, Edouard M, Mathot M, Moignier A. Complexity metrics for IMRT and VMAT plans: a review of current literature and applications. Br J Radiol. 2019;92(1102):20190270. doi:10.1259/bjr.20190270
Antoine M, Ralite F, Soustiel C, et al. Use of metrics to quantify IMRT and VMAT treatment plan complexity: a systematic review and perspectives. Phys Med. 2019;64:98‐108. doi:10.1016/j.ejmp.2019.05.024
Interian Y, Rideout V, Kearney VP, et al. Deep nets vs expert designed features in medical physics: an IMRT QA case study. Med Phys. 2018;45(6):2672‐2680. doi:10.1002/mp.12890
Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016;43(7):4323‐4334. doi:10.1118/1.4953835
Wall PDH, Hirata E, Morin O, Valdes G, Witztum A. Prospective clinical validation of virtual patient‐specific quality assurance of VMAT radiation therapy plans. Int J Radiat Oncol. 2022;113(5):1091‐1102. doi:10.1016/j.ijrobp.2022.04.040. Published online May 6.
Wall PDH, Fontenot JD. Application and comparison of machine learning models for predicting quality assurance outcomes in radiation therapy treatment planning. Inform Med Unlocked. 2020;18:100292. doi:10.1016/j.imu.2020.100292
Nyflot MJ, Thammasorn P, Wootton LS, Ford EC, Chaovalitwongse WA. Deep learning for patient‐specific quality assurance: identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med Phys. 2019;46(2):456‐464. doi:10.1002/mp.13338
Tomori S, Kadoya N, Kajikawa T, et al. Systematic method for a deep learning‐based prediction model for gamma evaluation in patient‐specific quality assurance of volumetric modulated arc therapy. Med Phys. 2021;48(3):1003‐1018. doi:10.1002/mp.14682
Russo S, Saez J, Esposito M, et al. Incorporating plan complexity into the statistical process control of volumetric modulated arc therapy pre‐treatment verifications. Med Phys. 2024;51(6):3961‐3971. doi:10.1002/mp.17081
Kamperis E, Kodona C, Hatziioannou K, Giannouzakos V. Complexity in radiation therapy: it's complicated. Int J Radiat Oncol. 2020;106(1):182‐184. doi:10.1016/j.ijrobp.2019.09.003
Kaplan LP, Placidi L, Bäck A, et al. Plan quality assessment in clinical practice: results of the 2020 ESTRO survey on plan complexity and robustness. Radiother Oncol. 2022;173:254‐261. doi:10.1016/j.radonc.2022.06.005
Hernandez V, Saez J, Pasler M, Jurado‐Bruggeman D, Jornet N. Comparison of complexity metrics for multi‐institutional evaluations of treatment plans in radiotherapy. Phys Imaging Radiat Oncol. 2018;5:37‐43. doi:10.1016/j.phro.2018.02.002
Hernandez V, Hansen CR, Widesott L, et al. The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol. 2020;153:26‐33. doi:10.1016/j.radonc.2020.09.038. What is plan quality in radiotherapy?.
Cavinato S, Fusella M, Paiusco M, Scaggion A. Quantitative assessment of helical tomotherapy plans complexity. J Appl Clin Med Phys. 2023;24(1):e13781. doi:10.1002/acm2.13781
Cavinato S, Bettinelli A, Dusi F, et al. Prediction models as decision‐support tools for virtual patient‐specific quality assurance of helical tomotherapy plans. Phys Imaging Radiat Oncol. 2023;26:100435. doi:10.1016/j.phro.2023.100435
Santos T, Ventura T, Mateus J, Capela M, Lopes MDC. On the complexity of helical tomotherapy treatment plans. J Appl Clin Med Phys. 2020;21(7):107‐118. doi:10.1002/acm2.12895
Cavinato S, Scaggion A. UCoMX: universal complexity metrics extractor. Zenodo, 2024. doi: 10.5281/zenodo.8276838
Crowe SB, Kairn T, Middlebrook N, et al. Examination of the properties of IMRT and VMAT beams and evaluation against pre‐treatment quality assurance results. Phys Med Biol. 2015;60(6):2587. doi:10.1088/0031‐9155/60/6/2587
Binny D, Lancaster CM, Harris S, Sylvander SR. Effects of changing modulation and pitch parameters on tomotherapy delivery quality assurance plans. J Appl Clin Med Phys. 2015;16(5):87‐105. doi:10.1120/jacmp.v16i5.5282
Westerly DC, Soisson E, Chen Q, et al. Treatment planning to improve delivery accuracy and patient throughput in helical tomotherapy. Int J Radiat Oncol Biol Phys. 2009;74(4):1290‐1297. doi:10.1016/j.ijrobp.2009.02.004
Boyd R, Jeong K, Tomé WA. Determining efficient helical IMRT modulation factor from the MLC leaf‐open time distribution on precision treatment planning system. J Appl Clin Med Phys. 2019;20(5):64‐74. doi:10.1002/acm2.12581
Lissner S, Schubert K, Klüter S, Oetzel D, Debus J. A method for testing the performance and the accuracy of the binary MLC used in helical tomotherapy. Z Für Med Phys. 2013;23(2):153‐161. doi:10.1016/j.zemedi.2012.08.001
Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359‐5373. doi:10.1118/1.3238104
Sakai M, Nakano H, Kawahara D, et al. Detecting MLC modeling errors using radiomics‐based machine learning in patient‐specific QA with an EPID for intensity‐modulated radiation therapy. Med Phys. 2021;48(3):991‐1002. doi:10.1002/mp.14699
Park SY, Kim IH, Ye SJ, Carlson J, Park JM. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy. Med Phys. 2014;41(11):111718. doi:10.1118/1.4897388
Hao Y, Zhang X, Wang J, Zhao T, Sun B. Improvement of IMRT QA prediction using imaging‐based neural architecture search. Med Phys. 2022;49(8):5236‐5243. doi:10.1002/mp.15694
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high‐throughput image‐based phenotyping. Radiology. 2020;295(2):328‐338. doi:10.1148/radiol.2020191145
Bettinelli A, Marturano F, Avanzo M, et al. A novel benchmarking approach to assess the agreement among radiomic tools. Radiology. 2022;303(3):533‐541. doi:10.1148/radiol.211604
Bettinelli A, Branchini M, De Monte F, Scaggion A, Paiusco M. Technical note: an IBEX adaption toward image biomarker standardization. Med Phys. 2020;47(3):1167‐1173. doi:10.1002/mp.13956